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Abstract

This report lays the foundation for a new model and approach for secure information
flow. The model is driven by lattice based information flow policy, which describes the
permitted dissemination of information in the system. System entities are allowed to
handle different classes of information from the flow policy, and information is
permitted to flow between entities so long as they do not violate the flow policy.

With this conceptually simple notion of security we can describe many interesting
security policies, for example, traditional multi-level policies, aggregation policies,
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implemented in practice. We also examine how other types of security policies such as
integrity and separation of duty can be defined in terms of lattice based policies.
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1 Introduction

Confidentiality security is concerned with restricting the disclosure of information in sys-

tems. One way of achieving this is to use an information flow policy which defines the

different classes of information (for example, classified, secret, etc.) that can exist in the

system and a flow relation which describes how information may flow between these classes.

System entities (users, processes, files, etc.) are considered to be the sources and sinks of

information, and each is bound to a security class from the flow policy. This binding is

interpreted as: if entity A is bound to class a then A may source information of class a

or higher and may sink information of class a or lower. A system is considered multilevel

secure if all flows between entities maintain the flow policy. Note that there are special

cases where certain entities, such as trusted subjects, are allowed violate this requirement

in a controlled manner.

Entities may be statically or dynamically bound to their security classes. A statically
bound entity has a fixed security class that cannot change during its lifetime. The class of

a dynamically bound entity may change to accommodate incoming or outgoing data, or to

allow direct upgrading or downgrading by some authorized entity. In the case of dynamic

binding, a policy on how their classes may change is normally adopted. For example a high
water mark policy[17] only allows classes to rise. With this approach, class changes cannot

result in a violation of the multilevel security requirement. Some models permit controlled
violation of the multilevel security requirement, such as McLean's[14] class change rules.

In this paper we propose two changes to this traditional notion of secure information

flow. Firstly, each entity is bound to a group or set of security classes from the flow policy.

This set defines the classes of information that the entity is allowed sink or source. Thus,
an entity 'bound' to set {secret, top-secret} may sink and/or source secret or top-secret

information. Of course, all flows will be subject to the constraint that they not violate
the flow policy. With this change, we discover that we can describe a variety of new

confidentiality policies, in particular aggregation policies. Secondly, we propose that flow

policies need not always be based on a transitive flow relation. We give examples of useful

non-transitive flow policies, and show how Chinese wall policies such as those in [5,12,15]

can be constructed in terms of a reflexive flow policy and group bindings for entities. The

advantage to our approach is that all these policies can be built within the framework of

the same security model.

Section 2 proposes the new (abstract) model for secure information flow. Section 3

4



gives a refinement of the group confinement model, in the form of a state based mandatory

access control model. This implementation oriented model is not unlike traditional MAC

models, and we discuss how group confinement could be retrofitted to models such as Bell

and LaPadula.

Information flow policies have traditionally been taken to be transitive[6], however in

[10] a case is made for reflexive flow policies that may contain a non-transitive flow relation.

Section 4 of this paper takes reflexive policies one step further by defining reflexive lattices-

a reflexive policy with lowest upper and greatest lower bound operators that are useful for

ralculating the security class of aggregate information. We propose that a flow policy should

form a reflexive lattice and show how an arbitrary reflexive relation can be transformed into

a reflexive lattice (which in turn can be defined in terms of lattice operations facilitating its

implementation). Section 5 shows how a selection of chinese wall policies can be described

in terms of reflexive flow policies and group confinements.

A number of interpretations can be made about policies that are described as reflexive

lattices. Common interpretations are: flow policies, which describe the allowable flows

between security classes; integrity policies, which define the clearances necessary to affect

the integrity of information. Section 6 proposes a new interpretation for a reflexive lattice

that allows it to describe separation of duty policies.

The appendix contains the necessary proofs for all properties proposed in the paper.
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2 Group Confinement Model

As with interval confinement in [10], we will define the concept of group confinement in as

general terms as possible. If desired, the model can be subsequently refined along with the

definition of information flow. For example, section 3 will consider a refinement to a state
transition model.

Definition 1 The group confinement model (GCFM) is defined as

GCFM -- (ENTS, L, confine, t>)

where

* ENTS defines the set of entities of interest in the system. An entity is anything which

information can flow into and/or out of, in the system. Examples are objects, files,

and processes. If desired, even parts of the hardware can be considered as entities,

for example, a terminal (source and sink of information to the peolpe who use it), a

local area network, etc.

* L gives the information flow policy as a distributive lattice, with flow relation (partial

order) < 1, least upper and greatest lower bound operators V and A, respectively.
We will study the information flow policy in more detail in section 4.

* > is an information flow relation between entities. The relation E I> F implies that

information can flow from entity E to entity F over the system being studied. It is

generalized to C t> F, where C,F C ENTS, to mean information from the entities in

S can flow as an aggregate, to the entities in Y. The relation t> can be thought of

as an abstraction of the implementation of the system into information flows between

entities. How this relation is determined will depend on how the system is modeled,

and the interpretation attached to the notion of information flow. In some cases, the

flow relation might not reflect all the flows that could occur, rather it represents the

flows to which the information flow policy L must apply.

* Every entity E E ENTS is confined to a set confine(E) (also denoted E), of security

classes from aL

Confine: ENTS -- Gclass; (Gclass - (PaL) - {})
L L L

1If L is a lattice then aL gives its set of components; < its partial ordering; V and A its lowest upper and
greatest lower bound operators respectively. We will often drop the L from the operator when no ambiguity
can arise. Similar abbreviations will be made for the other, yet to be defined, policy relations and operators.
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where P A gives the powerset of the set A. The group confinement of an entity E is

interpreted as:

- E is permitted to source information to any class s iff there exists an a E E such

that a < s.

- E is permitted to sink information from any class s iff there exists an a E E such

that s < a.

Note that all flows are subject to the constraint that they do not violate the flow policy-

the multilevel security requirement must hold for confinement, i.e.,

L
information flows from class a to class b implies a < b

0

Entities in GCFM can be thought of as bound to a confinement group from the group

policy Lg with alphabet aLg = Gclass. From the interpretation of group confinement,

information from confinement group A E aLg is information that could flow (sink) to any

class a such that a < s, where a E A, or could originate (source) from any class s such

that s < a and a E A. This results in the following definition for the group flow relation

on Lg.

Definition 2 Information at a confinement group A may flow to confinement group B if

A , B (A, B E aLg), where

L
A-SB - 3aEA,bEB*a < b

Note that - defined over LC does not form a partial order because it is neither antisym-

metric nor transitive. 0

Example 1 A system enforces a military style policy with classes u (unclassified), c (clas-

sified), s (secret), and t (top-secret). Entities A, B and C are confined to groups {u,c},

{c,s) and {u,t), respectively. Information is permitted to flow from entity A to entity

C since, entity A may source classified information and entity C may sink classified infor-

mation. Information may not flow from C to A however, since the lowest classification of

information that C can generate is secret, which cannot be sunk by A. Entity A is allowed

source classified information and entity C allowed sink it so a flow from A to B is permitted.



Note that Entity B is also allowed source classified information, and entity A allowed sink

this information, therefore a flow from B to A is allowed.

At first this may appear incorrect: what is preventing B sourcing secret information as

classified and giving it to A? However, we view entities as entirely passsive, they generate
information and the class of the information sourced at a particular instance will depend

on the confinement of the entity, in addition to the destination of the information. Thus

when B generates information destined for entity A is considerd to be classified. Similarly,

when C generates information destined for B is is secret. Note that the system flow relation

( t> ) is not necessarily transitive, and thus C > B and B I> A need not imply C > A. Of
course if it is transitive, then the scenario above is not secure since C > A is not secure.

Thus, suppose entities A and B are people, and we have an object D in the system
confined to {s} that is used to hold a secret. While entity B is permitted to transmit

information to entity A, and is also allowed to read the secret in D, the entity (B) may not,
by using the system, give the secret to entity A. For example, if B uses the mail utility to

send a copy of D to A, then there is, in the system a flow D 1> A, which is invalid. The

entity B could always read the secret, and then re-type it and send it to user A as classified

information. However in this case, the security breach is due to a flow outside the system

(the 'human' copy), and therefore is not of interest for security in the system-the person
could always use the telephone. If this type of flow is considered a threat, information flow

through people can always be considered transitive so that D i> B A B > A implies D t> A

always holds. Again, this reflects how the > relation represents the flows of interest over
the system to which the information flow policy is to be applied. A

Another useful relation that can be defined over confinement groups is the bound order

relation < . This relation determins if one confinement group forms a bo"i.d on another.

We say that B is a bound on A iff every group that can flow to A can flow to B, and every

group that B can flow to then A can also flow to. Formally,

Definition 3 Given confinement groups A, B E aLg, define
LC

A < B VXEaLeX,* A X .*BA

VX E aLe B. X A, X

This is equivalent to,

A < B 4* VaEAe3bEBsa < bA
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VbEB*3aEAea < b

The ordering < forms a partial order over Lp.

If information at confinement group A is combined with information at group B then

the confinement group of the resulting information should form an upper bound on both A

and B, i.e, for every group that can flow (-',+) into A or B then it can also flow into their

upper bound; simlarly, any group that the upper bound can flow into, then A and B can

flow into.

Definition 4 Define the upper aggregate of confinement groups A and B from group policy

Li to be
Lg L

ALEB -- {a vblaEAAbEB}

Similarly, a lower aggregate can be defined as

Lj; L
AL EB - {a AblaEAAbEB}

The upper aggregate of A and B forms an upper bound on A and B, and their lower

aggregate forms a lower bound. They are also distributive. 0

Example 2 An information flow policy for coordinates is defined in figure 1. A database

coordinate

lat long

L

Figure 1: Coordinates Flow Policy

of ICBMs is maintained which includes the longitude (group classification {long}), and

latitude (group classification {lat)) of the location of each rocket. A system operator who

is allowed to access either longitude or latitude information, but not both, is confined to

group (long, lat). Our definition of multilevel security ensures that this requirement is met,

since an aggregate flow of longitude and latitude has confinement grouping {coordinato},

and the confinement of the operator excludes access to information in this group.
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Unfortunately, while the upper aggregate is an upper bound operator, it does not give us

a lowest upper bound. The following example will illustrate this, and also that the structure

defined by Lg does not describe a lattice.

Example 3 Consider a group confinement policy constructed from the powerset lattice of

the set {a.b,c}. This policy will have components {{c}}, {{a},{b}}, etc. Some upper

aggregates are:

{{a},{b}} E {{a},{b}} = {{a},{b},{ab}} (1)

{{a},{b}} ( {{c},{b}} = {{ac},{b},{ab},{bc}} (2)

{{a},{bc}) D {{c},{ab}} = ffac},{bc},{ab},fabr}} (3)

Equation (1), illustrates that the upper aggregate of a group with itself may not result with

the same group. Consider entities E and F bound to this group {{a}, {b}}. The upper

aggregate must consider the case where E can source information of class a and entity F

can source information of class {b}; collectively they can source information of class {ab}

which is not in their original group confinements, but must be in their aggregate.

In equation (3), the operands A and B of the upper aggregate do not have a unique

lowest upper bound. Two upper bounds of these components are:

{{ab},{bc)} {ac},{abc}}

which are disjoint to one another and do not have a lower bound that forms an upper bound

on A and B. Thus, Lg does not form a lattice. A

While LV does not form a lattice, we know that it can be transformed into one using

Denning's transformation (see section 4.1.1). However this transformation is unnecessary2

as the aggregation operators have properties that can justify their use later in the paper.

Given confinement groups A and B, then

VDEaLos(A < DAB < D)#-A9.B-..D

i.e., the upper aggregate of A and B may flow (-,.) to any group that is a bound on A and

B. A more general property is,

VDEoLg,(A < DAB < D)= 3XCAEBeA < XAB < XAX < D
2and undesirable, since performing such a transformation would destroy the structure of Lg that makes

it easy to implementusing bitwise operations on sets.

10



This equation can be thought of as reflecting the fact that while a pair of groups may not

have a unique lowest upper bound, the aggregate will contain all candidates: for any upper

bound D on A and B, a subset of the aggregate of A and B will form a lower bound on D.

The lower aggregate operator has similar properties: for A, B E acL

VDEaLge(D <_ AAD <_ B)=*3XCA®B*X < AAX < BAD < X

Thus, while A 0 B does not give a greatest lower bound, (A and B may not even have

a unique greatest lower bound), any lower bound of A and B will be dominated by some

lower bound of A and B that is a subset of A 0 B.

2.1 confinement Group Equivalence

There is a degree of redundancy in confinement groups. For example, the confinement

groups {classified, top-secret) and {classified, secret, top-secret) from the mil-

itary policy have the same meaning-information at any class may flow to these groups,

while information at classified or higher may flow out.

Definition 5 Given a flow policy L, then for security classes a, b, x E aL, (a, b covers x) if

a forms a lower bound on x and b forms an upper bound on x, i.e.,
L L

a, b coversx ="- a < x A x < b

Extending this definition to a confinement group X covering a security class x gives

X coversz 2- 3a, bEX*a, bcoversx

0

Definition 6 Confinement groups A and B from group policy Lg are considered equal if

A B, where

A B--VaEA-BeB coversaA
Vb E B - A e A covers b

0

It can be shown that = forms an equivalence relation over Lg, and that the following

laws hold: for A, B, X E aLg and if A = X holds, then

A B =:o X-,, B AUX = A

A (B = XdeB AnX = A

A®B = XOB

11



Since union and intersection over an equivalence class of confinement groups is closed, we
can define the smallest and largest representitive c!asses of the equivalence class that group

A is in, as

[Al U{XlX = A}

LAJ - f{XX = A)

In the examples throughout this paper, a confinement group A will normally be represented

by the smallest component of its equivalence class, LAJ. The normal set operators (union

intersection etc.) can be defined over these groups as: for groups A and B, and class a E A,

AUB = AUB aEA = aE fAl

A n, B = [Al u [B1 A Cg B = rAl g FB1
A -c B = [Al - rBl

To reduce the number of different operators, we will overload the normal set operators by
dropping the o subscript in the group operators defined above.

2.2 Information Flow

The simple test[10] E t> F 5 E _ F (E, F E ENTS) is not a sufficient condition

for multilevel security. The test does not consider the possibility of information from a

number of entities flowing collectively into another entity. Since the aggregate operator

for confinement groups does not give an upper bound, the individual flows may be valid
(the confinement group of the destination entity dominates each individual source entity's

confinement group), but the combined flow (aggregate of the confinement groups) may be

invalid. Recall the security requirement- information at confinement group A may flow to

confinement group B iff A -,.+ B; source information may have originated from a number
of entities, and thus its confinement grouping is given by the upper aggregate of their

confinement groups, and this information must be able to flow to a confinement group that

is the lower aggregate of confinement groups of the destination entities. Thus, a system
with group confinements is multilevel secure iff

VE,.F C ENTS . > tY (4)

where,

e -- {ED (E ®{ELIFE Y}

12



The group confinement model is not driven by a special aggregation policy. Rather,

the information flow policy, in addition to defining the permitted flows in the system,

also, inherently defines (possibly disjoint) classes and their aggregates (upper bounds).

Group confinement allows one to distinguish the separate classes and their aggregates when

binding.

Example 4 Continuing with example 2, the officer (entity 0) has confinement

Q = {lat,long}

and files A and B confinement,

A = {lat} ] = {long}

A system with flows A > 0 is secure since A -,+ 0. However, a system with flows

{A,B} [> 0 is not secure since A E D - {coord}, which cannot flow to {lat,long}.
A

Example 5 Entities E, F and X have confinements

E= {al,a2} F = {b} X = {xlx2}

drawn from the flow policy described in figure 2. A system with flows {E,X} > {F} and

{X} t {E} is secure since X sources class xl information to E (X > E) and E and X

sources a2 V x2 = b information to F. A system with flows {E, X} r> {E, F} is not secure

since

E @ X = {al,cd,b} -/- {x3,a2} = E ® F

This second scenario might correspond to a system where E receives information from X

and then forwards that information with some of its own to F. The first scenario is the

case where F receives independent information from E to X, and the information sourced

by E is not the information it had sunk from X. This example shows the importance of

representing (using t> ) the nature of flows in the system correctly. A

Note that this security requirement is not too strong, despite the fact that the aggre-

gation operators, while providing upper and lower bounds, do not give lowest upper or

greatest lower bounds: recall the properties for aggregation (A, B E aLg)

VD*(A < DAB < D) =. AEB,,D

VD*(D < AAD < B) D D..A B

13



d

c b

al a2 x2

xl x3

L

Figure 2: Flow policy

These imply that if there exists any upper bound D on the confinements of the entities of

C, that is also a lower bound on the confinements of the entities in F, then -e , D -,.

holds. If such a bound does not exist the flow is not secure and Le "- 4 does not hold.

Group confinement is a generalization of interval confinement[10]. Interval confinement

is the case where each entity's group confinement forms an interval on the flow policy.

2.3 Group and Interval Confinement

In [10] entities are confined to an interval [a, b] from the flow policy such that a < b. In this

section we will show that the group confinement model is a generalization of the interval

confinement model from [10].

Consider confinement groups of Lg that can be described as intervals of R, i.e., for

X E oLe, then X can be described as an interval if

3a,bEX.VzEXea < zAz < b

If such an a, b exist it follows that a < b and {a, bJ = X. Now define an interval policy LT

whose components represent groups that can be described as intervals of R, i.e.,

aL = {{a,b)la :_ b A a, b E oR}

14



If A = {a, b} is an element of aL 7 with a < b, then let AL denote the lower bound a and

AH denote the upper bound b, on the interval described by A.
Now define for this policy L7" flow and aggregate operators based on those for LC (i.e.,

definitions 2 and 4). This gives for A, B E aL",

A JB * 3aEA,bEBea-%b
R* AL- + BH

A = ALUBL,AHUB }

A = AL nBL,AHnB}

We can show that L1 forms a lattice with an ordering relation defined as (A, B E aLi)

R R
A < B* AL _< BLAAH _< Bu

Thus, A e B gives a lowest upper bound and A ® B a greatest lower bound, on A

and B. Therefore, in a system where all group confinements can be described as intervals

(components of Lz), the security requirement given above (equation (1)) can be simplified

to
VE, F E ENTS a E t F E F (5)

In [10] entities are bound to intervals identical to those in L1 , and the security requirement

is
RVE, F EENTS . E tF +FH

which is equivalent to the requirement (2) above, given the definition of-,.+ on L1 . Therefore,
interval confinement is a special case of group confinement where the groups can be described

as intervals.
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3 A State Machine Model

The group confinement model can be refined to a state machine model. In this section we
will give one possible refinement, outlining how a restricted notion of group confinement

can be implemented in a State based Mandatory access control Model (SMM).

The system model is represented by: an information flow policy L which forms a dis-

tributive lattice; a fixed set of system entities ENTS(subjects and objects); a set of system

states S; an initial state so, and a state transition function T.

The system state in the MAC model describes the current accesses between subjects and
objects and their current group confinements. For simplicity we choose to abstract the

information about a system state to the following

" a function confine(s, E) which returns the group confinement of entity E E ENTS at

state s. This can also be written as s.E.

" a transitive and reflexive relation A > B which reflects the potential flows that could

occur during state s due to the system accesses defined at state S.

The state transition function T(op, s) returns a state s' which reflects the effect of applying

some access change operation (op) at state s.
We will need to make a number of restrictions on this state model for our refinement

to be correct. These will simplify the presentation of the model and also make it easy to

implement in practice. Section 3.5 will consider the implications of these restrictions, and

how they might me handeled in more general refinements of the GCFM. These restrictions

are

* The relation t' is transitive and reflexive at any given state, and also transitive in
the sense that if A .t> B at state s, and B t> C at a later state s', then there is a flow

from A to C over the history of the system (see definition 7 for a formal definition of

this).

e The confinement group of an entity contains an element that forms a lower bound on

every component of its confinement, i.e., for E E ENTS then v(E) holds where, for

confinement group A,

v(A) - 31EAeVaEAol < a

16



This component is denoted by -A-the lowest bound on confinement group A (note

that it exists and is unique since the original policy L forms a lattice).

We will now give an informal development of security for the SMM. Section 3.5 proves

that the SMM is a refinement of GCFM.

If an entity has a group confinement A at state a then the information held by that

entity can be thought of as having some classification a E A. If there is a potential for a

flow E > F during this state then this flow is valid so long as every possible class that can

be sunk by F could have originated from E, i.e.,

Vf Es.fe:3eEs.. e < f (6)

This is in a sense Eke a high water mark. An entity confined to {classified, topsecret}
must change its confinement to fsecret,topsecret}, if a read from a secret file is to be

secure (preventing the entity forwarding the information as classified). The confinement

of each entity must adhere to the restriction for group confinement, i.e., it must contain a

lowest bound on all its components. Thus a state s is secure only if

VE E ENTS * V(s._)

This, along with equation (6) gives the condition for a secure state: state a is secure iff
(VE, F E ENTS e E & F Vf E s.Fe L,.E_ f)VEE ENTSV(s.E)

(note that a. -L,.E is dominated by every e of s.E, and hence the simplification of (6).)

The confinement group of an entity may change as the system progresses so long as

the changes do not result in a violation of the multilevel security requirement. In making a

transition from state s to state s', an entity should not be allowed source or sink information

at state s' that it could not source or sink at state s. Thus if

{z E aL13Y E s.E A y < x}

gives the security classes from which entity E may source information at state S, then at

state a'
Vz E s'.f e 3Y E S.F- e y <5 z (7)

must hold. Similarly for sinks,

Vz E '.L 9 y .3Y .x E S (8)

17



Combining (7) and (8) above gives gives the requirement for a secure transition: for all

entities E E ENTS
Vz E s'.E e s.E covers z (9)

which is equivalent to s'.E C s.E, where C describes subset over the largest components of

its operands equivalence classes (see section 2.1). The state transition function is secure if
for each state s and operation op, then the transition to T(op, s) is secure.

The basic security theorem may now be stated.

Theorem 1 A state based MAC system, as described above, is secure iff

* so is secure;

e every state reachable from state so is secure, and

e transition function T is secure.

PROOF Covered in section 3.5 D

Example 6 A telephone directory holds the names and numbers of individuals from the
accounts, personnel, and sales departments of a company. Each entry in the directory is

bound to a single class from the set {acc,pers, sale}, identifying the department that each

individual belongs to. Each employee allowed access to the directory may obtain numbers
from at most two departments. Thus we define an information flow policy for the telephone

directory as the powerset lattice 2 {acc,pr r s ,s ale) . Each employee allowed access to the

directory is bound to the confinement group {{}, {acc,pers}, {acc,sale}, {pers,sale}}
(note the inclusion of {} to ensure that the confinement has a lowest bound).

Consider a system with telephone book entries labeled A, P, and S, with bindings

A = {acc} E = {pers} I = {sale}

and an employee with an initial binding at state so defined in table 1. This table describes a

possible trace of the system. At state si employee E accesses the directory for an accounts

number. So that this access may be secure (i.e., a secure state), the confinement of E
must change to jI.E reflecting the fact that from this state, E may subsequently access

information either of class pers or of class sale, but not both. Observe that the transition

from so to a, is secure since the binding of E at state .o covers its binding at state si. A
similar (secure) change in the bindings of E is required for the transition to state s2 to be
secure. For all subsequent states (after 32) E may access personnel and accounts numbers

but may not access sales numbers.
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state si Accesses Confinement (s,.f)

SO None {{}, {acc,pers}, {acc,sale}, {pers ,sale}}

81 A L> {{acc},{acc,pers},{acc,salo}}

82 P r E {{acc,prs}}

Table 1: A secure access sequence

The above example shows how a quantity based aggregation policy can be described

in terms of group confinement. We have not considered the possible problem of inference,
where an employee might know enough accounts and personnel numbers to deduce some-

thing about sales telephone numbers. Such flows might be analyzed using information

theoretic techniques, with the (inferred) flows modeled as part of the > relation, and thus

would not be of concern to the group confinement model at this level of detail.

31 Formal Basis for the State Transition Model

We have given an informal derivation of a state based version of the group confinement

model. We will now prove that it is, in fact, a refinement of the GCFM. To do this we
will set up an abstraction relation between the components of GCFM and SMM (state

MAC model). We will then prove that the definition of security in SMM implies security

in GCFM. This proof will provide the formal basis for the basic security theorem proposed

earlier.

The SMM and GCFM share the same set of entities. In the SMM, the initial confinement
of an entity corresponds to the confinement assigned to it in the GCFM, i.e., confine(E) =

so.confine(E). Thus an entity confined to {scret,top-secr t} in the GCFM will have

this group as initial confinement. The fact that its confinement will change as the states

progress is an implementation issue. We will assume that there are no flows defined at the

initial state. This will ensure that it is secure for the initial confinement.

In the GCFM, the relation > represents the flows that can occur over every possible

history of the system. In the state based model, the relation describes the flows that

could occur due to accesses at state a. Information flow in the SMM is thought of as

transitive in the sense that if there is a flow E > F at state s, and a flow F t> G at a later

state a ' then over the history of the system, there is a flow from E to G. Thus we define

the flows that could have occured over a system as:
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Definition 7 If E,, denotes a sequence of transitions, starting from the initial state so,

and finishing at state s, then the flows that can occur over this history is described by the

relation > , where for E, F E ENTS,

E.F -  3GEENTSE t1GAG*F ifn>O

I E t F otherwise

The behaviour of a system can be characterised by E-the set of all possible transition

sequences. All possible flows that could occur over the system are defined as (E, F E ENTS,

,,.Y E ENTS),

E~ En
E >F 3E, E > F

> Y E, VE EC, F E Y*E t

Observe from the last equation that an aggregate flow is not created if the flows occur from
different histories. In our refinement t> can be thought of as the abstraction of the flows

E
over the system, i.e., the relation >.

To prove that the SMM is a correct refinement of the abstract GCFM we must prove
that any system secure by the SMM is secure by the abstract GCFM. A system is secure

by the GCFM if

VC,,Y C ENTS a C > Y

where,

-- - {IE EE} Le - f{FIFEY}

A system is secure by the SMM if every possible En is secure (i.e., the basic security theorem

holds). Transition sequence E, is secure if every state it visits is secure and every state

transition it makes is secure. Thus, if

E
Vt,Y C_ ENTS .C > YT =F o.490. +so.-.

holds for a secure SMM system, then it is also secure by the GCFM (so.fe is the upper

aggregates on the initial confinements of entities in C and similarly S0.L, for lower ag-

gregates). This is proven by theorem 2 in the appendix. Thus SMM is a refinement of

SMM-every secure SMM system is a secure GCFM system.
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Pre-condition VEE ENTS.

@ {a.KIX V E--+ s.E}fnls.E
Post-condition VEE ENTSe

a'.,£= {s.Ixl OP E}

VE1, E2 E ENTS*

El I>E2*Elt E2

Table 2: Transition function Req(op, s)

3.2 Precision of the State Machine Model

We must address the precision of the security model SMM: is it possible for a system that

is not secure by SMM to be secure by GCFM? Clearly a machine modelled by SMM that

sets all entity confinements to singleton sets on its first transition (to a secure state) will

loose precision, in that subsequent secure flows might not be permitted. For example, an

entity confined to {classified, top-secret}, on reading a secret entity could have its

confinement set to {secret}; the entity can no longer be granted a read to a top-secret

entity, while in the GCFM it should be permitted since {secret} E {top-secret}

{class.top}.

Therefore we would like that any implementation of SMM would ensure that the shrink-

ages of group confinements during state transitions are minimal. To achieve this we will

propose an implementation for the state transition function T(op, s). This new function

will firstly determine whether a particular access request is possible, and if so, define how

resulting group confinements should be calculated. Furthermore, we will prove that the

SMM based on this transition function is precise, i.e., any system not secure by SMM given

this transition function is not secure by the GCFM3.

Definition 8 Table 2 defines the transition function Req(op, s) which, given state s, returns
OP

state s', reflecting the effect of applying access request op at state s. In this table, V gives

the access flows that could result if operation op was granted. If the precondition does not

hold, the operation is ignored, and state a remains unchanged. 0

Example 7 Return to example 2. If the employee E requests a read to an accounts phone

number, then we have {acc} -. sO.Z, i.e., the pre-condition on the request holds, and thus
3Remember that we are dealing with a restricted form of the GCFM, and thus the 'precision' is limited

to this dams of system
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it is secure. At state sj, the confinement of E is calculated as

= {accEso.Enso.E

{{acc}, {acc.pers}, {acc,sale}, {acc,pers,sale}} n so._

= {{acc}, {acc,per}, {accsale}}

The request to then read a personell number is valid since {pers} -. * sl.E, and at state 82

E's confinement is calculated as,

92 = {pars} E s1.E n s1.E

= {{acc,pers}}

Now, a request to read a sale's number is refused since {sale} ?6* S2 .E.

DefinitionL 8 was arrived at by the result of lemma 19: a secure transition from secure

state s to secure state s' with flows described by t at state s' is possible iff

VE E ENTS. E {s.XIX t E} - s.E

and furthermore, that the resulting state defined by Req(op, s) is secure. Therefore, any

transition sequence E,, of SMM, built up in terms of Req(op, s), will only visit secure states

s, and only make secure transitions s.-I to si (1 < i < n) along the way. Thus any system

having a transition function implemented by Req(op, s) will be secure by SMM, and hence

secure by GCFM.

Transition function Req(op, s) provides the basis for a precise implementation of GCFM.

Theorem 3 proves that for any transition sequence En, built according to function Req(op, s)

(which we represent as ER) if a subsequent request op fails (at state sn) its precondition then
op)benalwdthreutnhad the transition to state sn+1 (with flows described by t ) been allowed, the resulting

flows of En+i would not be secure by the GCFM. Formally, given state sn reached by En,

3Ee ENTS. e {S..XlX "t' E} 1. af.E_ =

-(VC,."CENTS t T :'*so.4e- .so.4 )

Thus any request for a new access that fails the precondition on function Req correctly does

SO.
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3.3 SMM and Traditional State Models

There is a similarity between the SMM and traditional state models. The SMM binds each

entity to an element of a partial order relation (the group confinement policy); the notion

of a secure state is defined exclusively in terms of this relation, and there is a rule based on

this relation that defines how entity binding may change as the system progresses. While

the SMM 'flow policy' (Lg) does not form a lattice, it is partially ordered and does provide

a consistent and meaningful treatment of upper and lower aggregate operators.

The SMM can implement a form of high water mark policy: if an entity is bound to an

interval (i.e., contains unique upper and lower bounds on all components), then the test for

a secure state becomes

E & F = -L.E < -L,.F

A state transition s to s' is secure if

VE E ENTSe -Ls.E <_ -- _,.E

i.e., its lowest bound can only rise. It is unlike a high water mark in that the lowest

bound may not rise beyond the top of the confinement interval. Thus an entity confined to

{ classified, secret) cannot sink top-secret information. A true high water mark policy

can be achieved if the top of the interval is the top of the lattice flow policy, allowing

bottoms rise to the top.

There is a useful class of systems described by a Bell and LaPadula model[1] that can be
viewed as restricted instansiations of the SMM model. Take a BLP system where the flow

model is described by a group confinement policy Lc; subjects and objects (entities) are

bound to single elements (groups) of this policy; the definition of a secure state (ss-condition

and *-property) remain the same, and can be abstracted to: state s is secure iff

LO

VE, FEENTSeE , F s.E < s.F (10)

where < is the (partial) bound order defined over the policy Lg. The above condition for

a secure state is stronger than the definition of a secure Otate in SMM since, by definition

we have

A < B * VaEAs3bEBea < bA

VbEB*3aEAea < b
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Finally, we have a restricted form of tranquility, whereby security classes (groups) may only

change according to the rule for a secure state transition (equation (9)). Now we have a

BLP-like model that can enforce aggregation policies.

Note that we have not given any consideration to how the policy LG will be imple-

mented. The confinement group equality relation and, in particular, lemma 6 implies that

a confinement group can be represented by the smallest set in its equivalence class. This

set can be shown to correspond to a set of disjoint intervals from the original flow policy,

each interval covering the classes contained in it. In the case of the SMM, these intervals
will have a common lowest bound-the lowest bound of the group. Entities are bound to

lists of intervals, and as the system progresses and accesses are established, the intervals
will shrink or be removed altogether to reflect the possible classifications of the information

held by the entity.

3.4 Denial of Access

MAC models that incorporate dynamic binding can suffer from the problem of information

flow due to denial of access: a low user can read a low file, however a high (Trojan) process,

by writing high information into the dynamically bound file, prevents the low user from

reading the file, and thus there is a potential for information flow. With SMM, a low file

would be confined to {low}, and thus could not have high information written to it. To

duplicate the scenario above, the file would have to be confined to {low, high}. Now the

low user can initially read from this file. As soon as the high Trojan writes to the file, it is

removed from the purview of the low user.
We are interested in how group confinement could be included in the Terry-Wiseman

model of security[16]. In doing this, we must address how flows due to denial of access
could be handelled under their philosophy for modelling security. Returning to the above

scenario, the low user cannot create the file to be used, since any entity created by a person

should inherit the confinement of the person, i.e., the file would be bound to {low}. The

Trojan cannot create the file to be used since it is an untrusted piece of software and thus

would not possess the faithful role. Thus to establish the covert channel, a faithful entity

(person) confined to {low, high} would have to create the file, and then make it available

to both the Trojan and the low user.

There seem to be a number of ways to prevent this channel. The easiest approach is to

prevent entity's changing their confinement when off the trusted path. This reflects the fact
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that while on the path, entities are trusted not to use class changes to transmit information;

once off the path, the entity cannot be trusted, and thus security classes are not allowed
change. Thus in the example above, the high entity decides what class of information (low

or high) he wants put into the file (and updates its confinement appropriately) before he

calls the Trojan horse.

Alternatively, we could insist that any class changes to an entity can only be done

before the entity enters any subset of the public domain. Once an entity is made available

to others, its confinement becomes static and can no longer change. This is the approach

adopted inf 11].
If the file is given to the low user or to the Trojan horse by the high user, then by the

no-signalling rule there is no threat of flow since the requester (the high user) is trusted
not to leak by using changes of control information. However, the high user is giving to the

low user an entity that can be used to to establish a covert channel. While the high user

can be trusted not create a channel based on controls from high to low, a low user cannot,

and thus the low user should not be given an entity with confinement {low, high}. The low
user may however be given the file confined to flow} or {high}. This requirement needs to

be formally captured in the no-signalling rule.

There is another type of flow due to denial of access that is not captured by any of the
above approaches. Example 6 illustrated how a quantity based aggregation policy could

be described in terms of group confinement. The security mechanism did not consider the

possible problem of inferences that can be made from denial of access. An employee having

accessed accounts and personell information might deduce that Jones is a member of the

sales department if access to his/her number is denied. Thus if inference controls are to

be included, they must consider how inferences can be made, not only about functional

information in the system, but also about control information (confinement etc).

Information flows due to denial of access is a area for future work.

3.5 Other State Based Refinements of GCFM

The SMM is one, allbeit restricted, refinement of the group confinement model. It is

restricted both in the kind of confinement it can enforce (v() must hold) and also in its

interpretation of information flow (transitive and reflexive). However, we have seen, and

will see in section 5 that it can enforce many useful security policies. This section considers

how these restrictions on SMM might be avoided. Rather than proposing any concrete
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refinements, we will discuss possibilities for other refinements, some of which, we hope to

develop formally in the near future.

3.5.1 Information Flow
E

Consider the detintion of information flow ( t> ) in SMM. This relation is transitive in the
sense that information that flows into an entity can be extracted from that entity at a later

state. This is a reasonable assumption for system objects such as files-information sunk

to a file is generally done so that it can be retrieved later. In the SMM entities can be
thought of as memorable-information that flows out of an entity could have been sunk by

that entity during an earlier state.

However, this reasoning need not apply to people. A person who is confined to group

{secret, top-secret) is trusted to handel secret and top-secret information appropriately

(by the very fact that he/she is confined to this group). Such an person is trusted not to
source top-secret information as secret, whether that top-secret information originated from
within the system, or as some information from outside the system. This degree of trust

can also be extended to any trusted process operating on the user's behalf. For example,
if the window system software is certified and trusted to behave appropriately, then a user

confined to {secret, top-secret) should be allowed to read and write simulaneously to
a secret and top-secret windows on the terminal screen. The user is trusted not to read

the top-secret window and re-type its information into the secret window. Note however,

that the user should not be permitted to use any system software to, for example, cut
a portion of the top-secret window and paste it into the secret window. In this latter

case, an information flow is generated in the system as a result of the functionality of the
windowing software and the flow policy must be applied. Therefore, our notion of trust

does not permit arbitrary downgrades, unless the user is willing to manually re-type the

top-secret information as secret, and in which case it would probably be easier to transmit
the information using some other medium (for example, a telephone).

We view people as memoryless-information sourced by a person can be viewed as
independant of any information sunk by that person during an earlier state. Recall the

interpretation of the flow relation C in GCFM, as representing the flows to which the

information flow policy is to be applied. In the case of memoryless people, once information

leaves the system, it is assumed never to re-enter inappropriately, and thus the flow policy

need not be applied to these flows. Note that while people may be considered memoryless in
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terms of other entities, they can remember information for their owm purposes: In example

2 the system operator is bound to {long,lat}. When he reads longitude information he can

remember it at later states and thus must be prevented from reading latitude information.

The operator is trusted to handel longitude or latitude information appropriately, but not

both. If ENTSm returns the set of memorable entities from ENTS; E F identifies the

flows due to accesses at state s; then the flows as a result of a transition sequence E" can

be defined as

(3G EENTSmO *E L> G AG t>F)

EtF E-. VE FvE IF ifn>O

E >I F otherwise

E Y - 3E,*VEE£,FEJF9E tF

Note how the (E >' F V E > F) part reflects the fact that a memoryless entity can

remember, for its own purposes, some information that could form part of a useful aggregate.

Given this definition, it is possible for two memoryless entities with similar confinements
to cooperate and learn information that individually they should not have access to. Con-

sider example 2, where there are two operators 01 and 02 each confined to {long,lat}.

01 is permited to read longitude information and forward it to 02 as latitude information,

who in turn may read real latitiude information, resulting in access to a coordinate. Even

if these entities were memorable, similar flows could be generated: 01 reads longitude,

02 reads latitude, and they compare values later in the canteen. Since the entities have

the same confinement they can be expected to collude. This problem can be circumvented

by the careful use of persistent-knowledge environments[15]. We could assume that if the

operators are going to collude , they most likely share the same terminal, local network, or

building. Thus we could assign and maintain, in the case of the terminal, a group confine-

ment indicating the information that has been processed at the terminal. As accesses are

made by its operators, its confinement will change. We do not need any special confinement

mechanism for persistent knowledge environment labels, since a terminal can be treated as

just another entity-a source and sink of information. We would have a similar treatment

for people. A (memoryless) person confined to {long, lat} creates two windows on the

screen. When the person reads longitude information through one window, the window's

confinement will change to {long}, as well as the user's confinement (since there is a flow
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from the longitude information to the person). This prevents the user displaying latitude

information in the other window. Note that if we are modelling the terminal as an en-
tity, then its confinement would also change to flong}, preventing another person reading

latitude information at that terminal.

Another class of memoryless entity is one where, even though it does 'forward' informa-

tion using the system, it is trusted not to forward anything valuable. An example of such

an entity is a (trusted) encryption process which sinks secret information (plain text) and

sources unclassified information (cipher text). This process is certified to behave appropri-

ately and thus can be considered memoryless. Again, this reflects the interpretation for L>

as representing the flows in the system to which the flow policy must be applied. Careful

use of memoryless entities provide a form of controlled violation of the information flow

policy-an unclassified user can only discover encrypted secrets. This idea is considered

further in section 6
In this section we have only proposed the notion of memorable and memoryless entities,

and the nature of the information flows between them. We have, as yet, to define the the

necessary and sufficient conditions for a secure state and secure transition. This is one

refinement of GCFM we believe to be worthwhile, and one we intend to do in the near

future.

3.5.2 Confinement

The SMM can cater only for a restricted form of confinement: confinement groups must

include an element that is a lower bound on the other members of the group. With this

restriction in place SMM is a valid and precise refinement of GCFM.
If the restriction is removed, then SMM is no longer a valid refinement. This can be

illustrated by the following example: a system has entities and confinements based on the

flow policy from example 2,

= {long,lat} A = {long}

E = {long.lat} B! = {lat)

The SMM can prevent entity El learning joint longitude and latitude information (i.e.,

a coordinate), but cannot prevent El sourcing both longitude and latitude information:

consider the flows
EltE2 E2 tA Elt B
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here, information from El flows to A and B, and while such a flow would be permitted in

a SMM-like model, it is not allowed by the GCFM.

It was the above class of flow that lead us to adopt the restriction on group confinement.

The restriction allows the security requirement to be re-written as

VC g ENTS, F E ENTS.C t> fF} * 4 -,.. F

allowing us to ignore the calculation of lower aggregates for sinks , and thus avoids the

problem noted above.

A valid state based model that does not have restrictions on confinement groups can be

built by modifying the SMM appropriately. To capture flows such as the above (i.e., flows to

aggregates) each entity E would require a history of the entities that originally sourced the

information held by E. Given this, when the flow E2 i> A occurs above, the confinement of

El and E2 must change (to flong}) so that their aggregate sourced information can flow

to A. The aim of such a mechanism would be to result in a property such as

VE, F E ENTS * E > F =>s .E <Sn.F

so that when the aggregates are calculated (C > F) it would ensure that the security

requirement of GCFM is upheld, since for groups A, B, C, D we have

(A < CAA < DAB < CAB < D)=*(AEB-C®D)

With this approach, we have a loss of precision due to the stronger definition of a secure

state, and except possibly for the case of certification[8,13], it is not a practical approach

since the history of all information flows would need to be maintained by the system at

run-time.

An alternative to the above is to strengthen the notion of a secure state further so that

state a is secure iff

VE, FE ENTS E &F =VeE .E, fE&.F=-e < f

With this restriction, once a flow is allowed during a state, it will be be permitted in all

subsequent states since the entire confinement group of F strictly dominates every class of

s.F, and their shrinkage as the system progresses will have no affect on this ordering. Thus

the property
En

VE, F E ENTS e E > F => sn.E < .
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holds, and a system secure by the above will also be secure by GCFM. However, while the

approach might initially appear attractive it is not at all precise and furthermore, unlike the

SMM, the transition function does not lend itself to a clean implementation: flows between

entities with confinement {long.lat) would require that their confinement change to either

{lat) or {long}, imposing a commitment on the class of the flow betwen the entities before
the nature of the flow (whether longitude or latitude) is known.

The SMM model, restricted as it is, does provide a framework for enforcing a variety of

useful flow policies. We believe that the policies that it cannot enforce (i.e., VO does not

hold for group cofinements) are either un-interesting (in the sense that we cannot find any

useful application) or could be implemented as part of an integrity policy.

Consider the kinds of confinements that cannot be enforced by SMM. Such a confinement
group C %ill have an a, b E C but a A b V C. Thus an entity EC confined to C can source

or sink information of class a or b, but cannot source or sink information of class a A b.

Now consider entities EA, EB confined to A = {a) and B = {b} respectively. Entity Ec can

source to LA or EB, but not both. What would this sourcing correspond to in a system?

If it corresponds to a direct write by entity EC to entities EA and EB, then this n-person
control is an integrity control and could be enforced as part of an integrity policy (see

section 6). If the sourcing corresponds to a flow from a read, whether direct or indirect (for

example a covert channel), then is the security control useful? We have something passive

like a read of EC by EA at one state preventing a read of EC by another entity (EB) at a

later state. Further work needs to be done to determine if such policies can be put to any

use, and if so, how a pratical model to enforce them could be built.
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4 Reflexive Flow Policies

Confidentiality security is concerned with restricting the disclosure of information in sys-

tems. One way of achieving this is to use an information flow policy[6] which can be thought

of as defining the different classes or kinds of information that can exist in the system and

how they may propagate. An example of this is the military flow policy which defines a set

of security classes which represent the sensitivity of the information in the system, and an

ordering relation which describes relative sensitivity. A flow relation (, _) defines how

information may propagate and is interpreted as:

for classes a, b, then a -,+ b means that information is permitted to flow from

class a to class b.

Rather than thinking of these classes of information as just security classes (as in the

traditional sense), we should think of them as a way of associating a simple representation

of meaning with the information in the system. For example, a student computer system

might have information of class exams, results, assignments, etc, and a flow relation which

describes the allowable propagation of information between classes.

Formally, if R is an information flow policy, then aR is the set of security classes,
Rand (a, b E aR) a -,.+ b gives the flow relation. A flow relation is trivially reflexive, since

information should always be allowed flow between the same security class. In [6], Denning

argues that a flow relation should be transitive. However Foley[10] proposes a number of

flow policies that use a non-transitive flow relation. In later sections (4.1 and 5) further

examples of non-transitive flow policies will be given. Therefore, we will opt for the most

general case where a flow relation need not be transitive.

Two security classes from an information flow policy can be considered equivalent if

their flow relations with all other security classes are identical. We will make the reasonable

assumption that a flow policy does not contain any equivalent security classes, i.e.,

Va, b E oR e (Vz E aR * (z -,* a 4* z -.+ b) A (a-,* z 4* b -,* z)) * a = b

We call this requirement pseduo.antisymmetry, because if the policy is transitive, then this

requirement becomes one of antisymmetry.

Given that a flow policy R is reflexive and pseduo-antisymmetric, then the combination

of information at class a E aR with information at class b E oR should result in information

at a class d EaR that forms an upper bound on a and b, i.e., a -.A d A b -. d. As R may
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not be transitive, d should also form an upper bound on all classes that are dominated by

a or b, since information at class a or b may have originated from a lower class. Similarly, if

the combined information (originally from classes a and b) at this class d may flow to some

class c, then individual flows from a to c and from b to c must also hold. These observations
give rise to the following definition.

Definition 9 A class d is an upper bound on a and b from the policy R if d is-upper a, b,
where

d is-upper a, b Vc E aR * c a V c ,.+ b c -. d A

Vc E aR * d, = a -.* cA b.,i c

A similar definition can be given for lower bounds. A class d is a lower bound on classes a

and b from the reflexive policy R if d is-lower a, b, where

d is-lower a, b Vc E R a .c V b -,+ c =:- d .c A

Vc E aR * c d =* c --+ a A c b

We can generalize these conditions in *.rns of a bound order relation: security class a is a
R

lower bound of security class b in policy R if a 5 b, where

R
a < b - ais-lowerb, b

0

The bound order relation of a policy is a partial order, and the following laws hold: for

a, b, c E oR then

a < b = a,+,b

a <_ b * bis-uppera, a

a < bAa < c * ais-lowerb, c

Note that we can rewrite the pseudo-antisymmetry requirement in terms of bound order as

Va,bEaRea < bAb < a=oa=b

Thus if policy R is antisymmetric under < it is pseudo-antisymmetric under -,*.

A pair of security classes can have a number of upper bounds. The lowest of all these

gives the lowest upper bound which provides us with the basis for security class combination.
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Definition 10 A class d forms a lowest upper bound on classes a and b from policy R if

Vd' E R e d' is-upper a, b d :_ d'

A class d forms a greatest lower bound on a and b if

Vd' E aR a d' is-lower a, b d' < d

Note that the antisymmetry of bound order ensures that d above is unique. 0

Definition 11 An information flow policy forms a reflezive lattice if its flow relation is

reflexive and pseduo-antisymmetric, and every pair of components have unique lowest upper,

and greatest lower, bounds. 0

Note that if R is a reflexive lattice then the set of security classes ordered by the bound

order forms a lattice with bound operators defined by the existing bound operators of R.

4.1 Transforming Flow Policies

The group confinement model is defined in terms of a (partial order) lattice information flow

policy. In this section we will show how an arbitrary reflexive relation can be transformed

into a reflexive lattice, and how this can be enforced within the group confinement model.

Before giving a general approach, we will first show how relations that are transitive and

reflexive can be transformed into lattices.

4.1.1 Transforming Quosets into Lattices

In this section we will give three different approaches to transforming a quoset (reflexive

and transitive relation) into a lattice. The first two are based on Birkoff[4] and Denning[7].

The third is a new transformation. All these transformations preserve the orderings in the

original information flow policy, but treat existing upper and lower bounds from the quoset

flow policy differently.

Birkoff Transformation

Definition 12 Given an arbitrary quoset Q, with ordering relation < , define a function

Q
fQ : oQ --+ P oQ JQ(a) {- fbib < a}

which maps Q to the powerset of aQ. We will drop the subscript from fQ to give f' if no

ambiguity can arise. O
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C

a b

Figure 3: Quoset Q

The resulting lattice from the transformation is the powerset lattice P aQ with ordering

relation C, lowest upper and greatest lower bound operators U and n respectively. That

the mapping fl preserves the orderings defined by the quoset is proven in [4], i.e.,

Q
Va,bEaQea < bc*.f(a)C_.(b)

Note that there is a dual of this flow preserving mapping from aQ to P aQ defin,.d as

Q
PQ:aQ-*PQ g'Q(a) -- {bIa < b}

We will generally use the mapping if.

Example 8 A quoset Q has alphabet {a,b,c} and orderings as defined in figure 3. This

policy is mapped to the powerset lattice P {abc} by the mapping

f'(a)={a} f(b)={b} f'(c)=abc}

Note how the orderings in Q are preserved by the mapping. For example, we have a < c

and {a} C_ {abc}. However, the 'intuitive' lowest upper bound of a and b is not f (c) in

the lattice, but {ab} C f (c).

Thus, if we were to use this technique to convert a quoset flow policy into a lattice for

use in the GCFM, we must be aware of this 'side effect' where the apparent lowest upper

and (greatest lower) bounds of the flow policy may not correspond to the lowest upper and

(greatest lower) bounds in the lattice. Of course, in some instances this is is necessary if,

in the original quoset, elements have more than one lowest upper bound. For example,

suppose that both a and b above can also flow to an element d, then in Q, a and b do not

have a unique lowest upper bound. However, in the powerset lattice, {ab} is their lowest

upper bound, which in turn is dominated by both fP (c) and fp (d). A

An advantage of having our policy as a powerset lattice is that it can easily be im-

plemented in terms of bitwise comparisons and operations on sets. There is, of course,
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a problem in implementing very large flow policies: each security class requires IaPolicyl

bits. In the group confinement model we are not storing a single security class for each
entity, but a list of security classes. This list (at worst case) could range from a single

component to IaPolicyl components-the case where every class in the policy is disjoint

(thus no advantage can be taken of class covering), and the entity is confined to the group

{{z)Iz E aPolicy}. Perhaps large policies could be specified as a hierarchy of flow policies,
each with their own orderings as well as orderings between individual policies. Such policies

might find application in large networks, where nodes have local flow policies, in addition

to net-wide policies.

Denning Transformation

Denning's transformation is similar to Birkoff's detailed above, however instead of mapping

to the entire powerset lattice, the minimal subset of the powerset is taken, such that it

includes the set of mapped components f (z) (z E aQ) along with necessary lowest upper

and greatest lower bounds. The transformation is performed in two stages:

1. (Birkoff[4]) Transform the quasi ordered set Q into a partially ordered set (poset) P

by

(a) Define an order preserving mapping f (x) from aQ to 2Q as

Q
f(x)=fyJy~aQ~y < x}

(b) Define poset P as

= If (x)lx E QQ}

and an ordering relation defined by subset i.e., for X, Y E aP then

P
X <Y*xcy

The mapping fl (z) from Q to P preserves the ordering relation[4] i.e.,

Q P

Vzx,Y(,yEaQ=*zT < p*f'(z) < fp(y))

2. (Denning[7]) The poset P can be transformed into a lattice L with: subset as the

ordering relation, union as the lowest upper bound operator, and intersection as the

greatest lower bound operator. The steps are:
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I=I r(x)

1 ja {a}C {ab}
b {a,b}

d l{a,bc,d}

a I {a,b,ce}

Figure 4: Quasi Ordered set Q, and mapping f (z)

(a) Add components H = aQ, and L = f} to aP.

(b) Define the set of successors common to sets of classes X and Y of poset P as
s(X, Y), where

Y(X,Y) = {ZIZ E aP A X U Y C Z}

(c) let 1V = nfs(X,Y). If w E s(X, Y), then class X and Y have class W4" as their

lowest upper bound in P, otherwise they have none, so add W to oP.

It can be proven that this expansion of P terminates and that the orderings of the

original policy are preserved by mapping fP (x).

Example 9 The policy of example 8 can be transformed into the lattice with components

{}, {a}, {b} and {abc). Here, the original lowest upper bound of a and b are preserved in

the lattice as if (c).

Example 10 Figures 4 and 5 show the transformations from a quoset Q to a lattice L.

When we construct a flow policy we define all the different classes (kinds) of information

that can exist in the system and define a flow relation over them. We may not wish to define

what the precise upper and lower bounds are. In example 8, we define that information

of class a may flow to c and that information of class b can also flow to c. Should this

imply a commitment to having c as the lowest upper bound of a and b? We think not 4 .

4Our argument in favour of Birkoff's transformation is applicable only to the work presented here, and
in particular the group confinement model. There are situations where it ias desirable to preserve as much of
the structure of the original policy as possible, and Denning's transformation must be used. A case in point
is the work in [ 5]
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{ ab,c,d,e)

{a~bccd) {b~ce) {a~bcd} aabbce}

{alo) {ac} fa, bc {.c)

fa} fa, { ac

Figure 5: Poset P and Lattice L

Birkoff's transformation allows tie lowest upper bound of a and b to denote a class that

corresponds to the composition of information of class a and b (which may flow to c). With

Denning's transformation we loose this fine granularity, and can only talk about the class c

representing information at class c or the combination of information at classes a and b. If

a large policy is to be built, then we feel that it is easier to think of the restrictions in terms

of just a collection of flow relations (a may flow to b, etc.) than having to also consider

aggregates and how they interact.

Example 11 An information system holds medical financial and personell details. The flow

policy has an alphabet {med, fin, per), and each class is disjoint from one another. Using

Denning's transformation, two additional classes will be added, namely H which denotes

the universal upper bound, and L the universal lower bound. Given this basic policy, we

cannot distinguish between information that originated from medical and financial sources

or medical and personell sources. Consider an entity confined to the group

{(ad V fin), (med V per))

which represents a person who is allowed read medical and financial or medical and personell

information, but not everything. If we build the policy using Denning's transformation the

confinement is implemented as

{f(mod) V f(f in), f (mod) V f(per)} = {H, H} {H}
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which does not capture our intention. However, if we transform to the complete powerset

lattice, then our desires are realized, with the entity bound to

{f (mod) U rf (tin), o(md) U Jf (per)} = f{med.f in}, {medper}}

Note that if we had started out with a powerset lattice (as was done in example 6) this

problem would not have occurred. However, remember that we should think of a flow

policy as defining the different kinds of information that can exist in the system (medical,

financial, etc.), and how they may flow. The Birkoff transformation will incorporate how

the aggregates may flow. A

Continuing with the last example, but considering Birkoff's transformation, the group

confinement
{(reed A tin), (reed A per))

would be transformed to

{ff (med) n f (fin), f(med) n f(per)) = {{, {}} = {{}

loosing our desire to restrict flows to medical and financial, or medical and personell. Thus,

while Birkoff's transformation provides a general treatment for the lowest upper bounds of

classes from the original policy it is not consistent for greatest lower bounds. That is, given

classes a and b, then if (a) U if (b) is the upper bound on only a, b and anything they are

bounds on; if (a) n f (b) is a lower bound on a and b and anything they are bounded by,

but may also be a lower bound on a class they are disjoint to. Put formally, given arbitrary

quoset Q and mapping if to powerset lattice P otQ, then

VA, B C aQeA I B * (U{f'(a)laE A}) I (U{.f (b)lbE B)) (11)

where (a,b E aQ) a I b implies that classes a and b are disjoint, i.e.,

a I b "- -a < b A-,b < a

this can be extended to sets of classes, such that given A, B C aQ

A I B - VaEA,VbEB*a I b

Equation (11) tells us that given collections of classes A and B that are disjoint from one

another, then their lowest upper bounds are also disjoint from one another. For example,
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{fin,ued} and {per} are disjoint and so is their respective lowest upper bounds in the

powerset lattice. However this law does not hold for greatest lower bounds, i.e.,

VA, B C aQaA I B - (n{f(a)a EA}) I (nf{f(b)lb E B}) (12)

does not hold for the powerset lattice as confirmed aboves .

The next section proposes a new transformation that provides a uniform treatment of

greatest lower and lowest upper bounds.

Symmetric Powerset Lattices

Definition 13 Define a symmetric powerset lattice based on the set of elements S as Ps S,
with alphabet

aPsS - {(X,Y)IX, Y E PS}

If A E OPs S then let (AL, AH) denote A. For A, B E aPs S define

A < B AL _BLAAH BH

A V B (AL n BL,AH U B)

A A B (AL U BL,Al n BH

Ps S forms a distributive complementable lattice, with partial order <, and lowest upper

and greatest lower bound operators V and A respectively. 0

Definition 14 Given an arbitrary quoset Q, define a flow preserving mapping fps as

JPQS : CQ - a(Ps aQ) JQ(x) = (?Q(x), fQ(x))

where functions ?P and f" are defined in the previous section. 0

The mapping f's preserves the flows of it domain, i.e.,

Q P'S CQ
Va, bEaQea < b* fs (a) < fs(b)

Furthermore, if collections of classes are disjoint from one another then so are their lowest

upper and greatest lower bounds, i.e.,

VA, BCaQ*A I B = (V{fS(a)IaEA}) I (V{f's(b)bEB})

(A {Is(a)Ia E A}) I (A {f's(b)1b E B})

BAn interesting point is that if we use the dual mapping ? ' then law (12) does hold whle law (11) does

not. This suggests how to construct the new transformation.
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Example 12 The flow policy described in example 11 can be transformed to the symmetric

powerset lattice Ps {ed, fin, per} with mapping,

"s (mod) = ({med, {mod})

fs(t in) = ({fin},{fin})

fs(per) = ({per},{per})

Some (disjoint) greatest lower bounds are

fs(med)AJfs(fin) = (m{dfin},{})

fs(med) A fs(per) = ({md, per),{})

and entity confined to group {med A f in, med A per} will be confined to

{({med, fin}, {}), ({med, per}, {})}

in the model, and we get the desired flow cont.'ols.

4.2 Transforming Reflexive Relations into Lattices

The group confinement model was defined in terms of a (partial order) lattice based flow

policy. This section will show how an arbitrary reflexive relation can be transformed into

a reflexive lattice, and enforced within the group confinement model. We will base our

transformation on the powerset lattice. The appendix gives full details on how a reflexive

policy can be mapped to a symmetric powerset lattice. For the sake of clarity we have

choosen to present the less complex of the two approaches.

Given a reflexive flow policy R, construct a group confinement flow policy (section 2)

built from the powerset lattice of the set of security classed defined by R. The alphabet of

this lattice Rg is,

g - {XIX c_ aR} - {}

and has a flow relation (defintion 2) defined as (A, B E aRg),

A 9B*3XEA,YEBoXC Y

(note that subset is the ordering relation on the 'base' policy aR for GCFM). This flow

relation has a bound order defined by the partial ordering relation _< on R since by
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definition 3,

A B VX.X R A*X 'R BA
R RVX.B -X :. A-- X

We know from section 2 that Rg does not form a lattice, but if we consider only group

confinements that form intervals on P oR, i.e., for each confinement A,

31,hEASVxEAsl < XAX :_ h

Then the set of all such confinements are closed over E and ®, and it forms a sublattice (an

interval lattice[1O] of Rg with E as lowest upper and 0 as greatest lower bound operators.

Furthermore, from the above we know that this interval sublattice forms a reflexive lattice

with flow relation -,- and bound order <.

Definition 15 Define a mapping fR from arbitrary reflexive relation R to this sublattice

of RC as

: oR a--Rg .R R(a) -{R(a),h R(a)}

where
R R

FR (a) blb < a} h(a) -{blb-+ a}

Each component of R will be mapped to an interval of P oR, since bound is a stronger

condition than flow, i.e., a < b = a -- + b, implying that F (a) g h7"(a), and T'R(a) is

an interval of P aR, with bottom / (a) and top h" (a) Thus if is a mapping from R to a

reflexive lattice. The mapping if preserves the flows of R, i.e.,

Va,bEaRsa b4* f(a)! if(b)

Thus we can use fl (a) in Rg for any class a drawn from R with no detrimental effect on

flows.

Since Rg has been built from a powerset lattice then, like the Birkoff transformation, it

interval sublattice may contain extra upper bounds. For example, consider the flow policy

in figure 3 (page 34), ab and c from R would be mapped to {{a}}, {{b}} and {{a,b}}

respectively in Rg. The lowest upper bound of a and b in R is c, but in R0 it is {{ab}},

reflecting the fact that information of class a and b have been combined. Refer back to
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section 4.1.1 for the pros and cons and this effect. Like the Birkoff transformation, fR has

the property,

VA, B C GR. A I B* (E {fR(a)Ia E A)) I (E {fR(b)lbE B))

but need a transformation based on symmetric powerset lattices to achieve a similar property
for greatest lower bounds.

Thus we have a transformation from an arbitrary reflexive policy R to a reflexive sub-

lattice of Rg that preserves the flows of R and provides consistent treatment of upper and

lower bounds.

Enforcing a Reflexive Policy in GCFM

Given a reflexive flow policy, the intention behind confining an entity E to a confinement
group A of classes drawn from the policy, is that

1. E is permitted to source information to any class s iff there exists an a E A such that
R

a -+ s.

2. E is permitted to sink information from any class s iff there exists an a E A such that
R

s -- * a.

Consider condition 1. above. This can be written in terms of Rg based on the mapping f
as: E is permitted to source information to any class S E aRg iff

3a E A of(a) -JS

3a E A@3x E f'(a),sESex Cs

* 3xEU f(a)aEA}ezCs

If we consider only singleton sets S = {s) drawn from Rg we get the condition

1. E is permitted to source information to any class 8 E P aR (the powerset lattice

policy that drives Rg) iff there exists an a E U~f(a)ja E A} such that a C s

We can simliarly re-define item 2. above using the same reasoning to give

2. E is permitted to sink information from any class 8 E P* aR iff there exists an a E

U{.ff (a)ja E A) such that s C a.
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We now have a reformulation of what me mean by group confinement for reflexive policies

in terms of a (transformed) group confinement based on classes drawn from a lattice flow

policy. Thus we can enforce reflexive flow policies withing the existing structure of the

GCFM.

Example 13 A private hospital information system processes information of class records

(medical history); treatment (given to patients); accounts (for patients); director (share-

holder information); and management. How information may flow between these different

classes is described by the reflexive relation in figure 1. Note how treatment information is

records director

managemn

treatment accounts

Figure 6: Flow policy HOSPITAL

x f(x)

records {{tr},{tmr}}

director {{d,a},{dm,a}}

management {{m}, {t,m,a}}

treatment {{t}}

accounts {{a}}

Table 3: Mapping from HOSPITAL to Rg

allowed flow to records or management, but for confidentiality reasons, cannot flow to class

director. Similarly, accounts information is not allowed flow to records (for profitability
reasons). Management is allowed coordinate all this information given these constraints.

This reflexive relation can be transformed into the reflexive lattice Rg using the mapping

described in table 3. Observe from this table that if information of class treatment and
accounts are combined then their lowest upper bound in R) is not f(management), but

{{t, a}}, which may flow to class management, but not to records nor director.
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A consultant in this hosptial might be allowed sink and/or source information of class

treatment and records, and thus is confined to the group {treatment, records}. In the

GCFM this corresponds to a binding

f(treament) U f(records) = t}, {r}, f{tmr}}
= {{t},{(rl,{t ml,{rmltrl

The hospital administrator might be bound to {management}, which from table 1 corre-

sponds to {{m}, {tma)}. Note how the consultant and administrator are bound to groups of

classes from the lattice P aHOSPITAL which is enforced by GCFM. These classes represent

the sources/sinks that they are permitted to make. For example, class {ma} means that

the administrator can sink management and accounting information; the administrator can
also source records information since {m} C tmr) is also in his confinement. Note that in

the case of the MAC model described earlier, it is not allowed (and correctly so) do both:

as soon as the administrator accesses accounts information, his confinement must change

to f{ma), {tmal} to ensure a secure state. Now it is no longer possible to source to records,

since the administrator possesses accounts information which he has the ability to source,

and accounts -,.f records is invalid. Similarly, if the administrator initally sourced to

records, he could no longer sink accounts. We shall see further examples of these kinds of

aggregate policies in the next section. A

Thus, an arbitrary reflexive flow policy can be transformed and enforced by the GCFM.
If the policy is transitive, then each component a of the policy aR will map to a singleton
set {f(a)) in Rg, since 1(a) = h(a). If the policy is not transitive, then certain components

of aR will map to a group of classes from PaR (in fact an interval, since 1(a) C_ h(a)).

The mapping f from R to Rg applies to the abstract model GCFM. If we are to use

a reflexive policy in the SMM, we must ensure that the resulting confinements are valid

(i.e., v() holds). When a single class a E aR is mapped to fl (a), since f (a) forms an

interval then V(f (a)) holds. The map of a group of classes A E P aR may not form a

valid confinement for SMM. In this case, a lowest bound I =A f.ip (.) ja E A} should be

added so that V({.Lp (a) Ia E A} U {1}) holds.
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5 Chinese Wall Security Policies

The group confinement model can be used to formulate (and enforce) Chinese Wall security

policies[5]. It has been pointed out that a chinese wall is a form of aggregation policy, where

users are allowed access to individual datasets but not to aggregates of conflicting datasets.

We will show, using a number of examples, how aggregation policies similar to those in

[5,12,15] might be described within our model.

Example 14 Consider a market analysis database that contains information about banks

Bank-x and Bank-y, and oil companies OU-z and Oil-w. There are two conflict of interest

classes BANKS and OIL. Within conflict class BANKS there are two kinds of information

(datasets) bank-x and bank-y, corresponding to the class of information held by Bank-x

and Bank-y respectively. The chinese wall policy insists that these classes are disjoint, i.e.,

information about one bank is not allowed flow to another bank. Thus the conflict of interest

class BANKS can be thought of as describing a flow policy with alphabet {bank-x, bank-y}

and relations bank-x -,. bank-x, bank-y -,* bank-y. Conflict policy OIL has a similar

definition, with alphabet {oil-z, oil-w} and classes oil-z and oil-w disjoint.

Now we must define how these two policies can be composed. Flows are possible between

the components of the conflict policies so long as they do not violate the relations within

them. Therefore, the overall flow policy can be described by the join[10] of BANKS and OIL.

Policy join U of policies Cl and C2 has alphabet (aC1 U a C2) and its flow relation is

defined as (a, b E a(Cl U C2)),

CaUC2 (a, bEaC1a.a1b)A

C2(a, b E aC2 =* a -.1 b)

Table 4 gives the mapping of this policy to the group lattice built from the powerset lattice

P{xyzv}, where bank-xis abbreviated tox, and similarly for the other classes. However,

on a closer inspection of policy BANKS U OIL we discover that it is too general for our

purposes here: it (correctly by its definition) permits flows from bank-z to oil-z and

from bank-y to oil-z and also from bank- E bank-y to oil-z, which is not desirable.

Thus, we need to supplement the defintion of join with a definition of how the aggregates

of classes may flow in the joined policy. In the case of oil-z we wish to prevent it from
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S f(s)
bank-x {{x}, {zv}}

bank-y {{y},f{yz}}

oil-z {{z},{yz}}

oil-v {{v},f{y,}}

Table 4: Mapping for BANKS U OIL

sourcing/sinking aggregate bank-x ED bank-y. Therefore we define class oil-z' as6 ,

oil-z' = f(oil-z)- (f(bank-x) $ f(bank-y))

= {{z},{xz},{yz}}

Note how xyz is no longer a member of oil-z'. The other classes can be similarly redefined

so as to constrain flows of (conflicting) aggregates,

bank-x' = f(bank-x)- (f(oil-z) e f(oil-w))

bank-y' = f(bank-y) - (f(oil-z) e f(oil-v))

oil-v' = f(oil-v)- (f(bank-x) e f(bank-y))

Now, under this flow policy information is permited to flow between the classes of differ-

ent conflict policies. For example, bank-x' and bank-y' may flow to oil-z', but their

aggregate bank-x' IE bank-yI may not.

Any information about Bank-x stored in the database will have group confinement

bank-x'; information about Bank-y will have confinement bank-y', etc. A user of the

database will be confined to (bank-x' U bank-y' U oil-z' U oil-w'), allowing access to

every individual item of company information but not to conflicting aggregates.

Consider a database with entries X, Y, Z and W confined as

X = bank-x' Z = oil-z'

Y = bank-y' W = oil-W'

and a user E with confinement (bank-x' U bank-y' U oil-z' U oil-,'). A system with

flows {X, Z} t> U is secure since

2C a) Z
6Note that the met difference operator is defined on the largest groups in the equivalence classes of its

operands.
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*{Xz}, {xyzid} -+ f {{}, f{Y1. f{Z}. {~ Z} Z} y} y}

However, a system with flow {X, Y} > U is not secure since

X E = {{xy}, {xyz}, {xyv}}

may not flow to U since there is no component of LU that contains (xy). L

Although our example only considered the information flow in terms of the abstract

relation > , it applies equally to the MAC state based example: As the user accesses the

database entries, his confinement will change to reflect the information he possesses, which,

in turn, will ensure a valid chinese wall.

Lin[12] points out that in the Brewer-Nash model, conflict of interest satisfies a kind

of transitivity property: if A is in conflict with B, and B in conflict with C, then A is

(implicitly) in conflict with C. The GCFM does not impose this type of restriction as will

be seen in the next example taken from [12].

Example 15 A (slightly outdated) database holds strategic information about the coun-

tries: USA, UK and USSR. Information classes usa and uk are disjoint to information of

class user (i.e., information is not permitted to flow between them). Thus we define two

conflict of interest classes C1 and C2, with alphabets

OCi = {ussr,usa} aC2 = fussr, uk}

and no relations defined on them except reflexivity. We can construct C1 U C2 using the

same approach as in the last example. Remember that with this joined policy, all relations

are valid so long as the relations of the original policies are preserved. This will yield a

mapping from classes ussr, usa and uk to confinement groups defined as

f(usa) = {{usa},{usauk}}

f(uk) = {{uk},{usauk}

f(ussr) = {{ussr}}

In this policy, information may flow between the USA and UK, but always remains disjoint

from the USSR. A

In [151 Meadows considers how the Brewer-Nash Chinese wall can be extended so that it

can handle military (multilevel) aggregation problems. For example, (conflicting) datasets
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z f(z)
f(a) (usa) { {a}, {akut} }
f(r) (ussr) { {r}, {rust} }
f(k) (uk) { {k}, {akust} }

f(u) { {u}, fakru)

f(s) { {}, Iakrus}

f(t) { it}, {akrust} }

Table 5: Flow preserving mapping from MILAGG

A and B might be unclassified and secret repectively, however their aggregate is not secret,

but top-secret. The next example considers how such a policy might be constructed in

terms of a reflexive flow policy and group confinements.

Example 16 Consider example 15, and suppose we wish to introduce military-style clas-

sifications for the different kinds of information (datasets) in the system. With this policy,

information of kind usa and/or uk is considered unclassified; information of kind ussr is

secret; information formed from the aggregation of ussr and uk is secret; however, the

aggregation of ussr and usa information is considered top-secret (an 'excepted aggregate').

Thus for example, a secret user of the database may read USSR and UK entries, but may

only read either USSR or UK entries. A top-secret user may read all kinds of information.

Note that all these flows are (implicitly) constrained by the flow policy; thus while the top

secret user may initially be granted complete access to USA and USSR files, he may not

copy information from one to the other.

We must construct a flow policy which defines the allowable flows between the different

kinds (classes) of information. We start off with the usual partially ordered military policy
MILITARY with alphabet {u, s, t} , where u denotes class secret; s denotes secret, and t

top-secret. Given policies C1 and C2 from example 15, define the policy

MILAGG - C1 U C2 U MILITARY

Table 5 gives the inital mapping f from MILAGG to its group policy (a abbreviates usa; k
abbreviates uk, and r ussr). As with the last two examples we knr w that policy join is too

general for aggregation puproses, so some additional constraints need to be placed on each
class. Each dataset is constrained to a single security class from MILITARY; for example,
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datasets usa and uk are unclassified. Thus we have,

a' = f(a)nf(u)={{au},{auk}}

r' = f(r)nf()={{r,},{rus}}

k' = f(k)ff(u)={ku},{auk}

The security classes from MILITARY are sufficient except that we need to ensure that the

aggregate of USA and USSR information is not secret, but top-secret. This yields

s f(s) - (f(a) E f(r)) a {{s}, {akus}, {rkus}}

A user of the database who is bound to secret (i.e., u' ), can access any individual dataset,

or the aggregate of USSR and UK. However, he may not access the aggregate of USSR and

USA.
Again remember that these bindings can be used in the state based model described

in section 3. In the case of the secret user, as soon as he accesses USSR information, he

cannot write this information into a UK or USA location (preserve flow policy). Having

done this, he cannot access any USA information (chinese wall). However, he can still read

UK information, since its aggregate with USSR is secret. A

These last three examples illustrate some of the versatility of describing a security pol-

icy in terms of a reflexive flow policy and group confinement. We believe that there are

many more interesting policies that can be described within the framework of the GCFM.
However, it is not initially apparent how to construct the different policies in terms of re-

flexive policies and group confinements. For example, we had difficulty trying to capture

the example policy described in [15] and for the sake of clarity had to resort to the simpler

one described in example 16. We have a policy construction operator join U which does

not quite fit our requirements for composing aggregate policies. Further research is required

to define additional, more useful, policy join operators. Ultimately, we envisage a flow pol-

icy description language, which can succinctly capture the flow and aggregation rules for

a mandatory confidentiality policy. We believe that group policy lattices are sufficiently

flexible to provide the basis for the semantics of such a language.
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6 Security Flavours

The group confinement model provides an approach to modeling confidentiality require-

ments in systems. An information flow policy specifies the permitted dissemination of

information as a flow relation between different classes (or kinds) of information that can

exist in the system. Entities are bound to confinement groups, which provides a means of

controlling the movement of aggregate information through the system.

6.1 Collective Confidentiality

A different interpretation can be made about an information flow policy. Given a reflexive

lattice R, then a -, b (a, b E oR) could be taken to mean that information at class a is

permitted to flow to the collective classes bl,... , b,,, where b = b, V ... V b,,. This is not to

state that the information may flow from a to the individual bi's. In general, we say that

for a,* *,a,,, bl,...,bm then a, A A- a ,- bi V ... V bm means that information at the

collective classes a,...,a,, may flow to the collective classes bj,....,b,. We call a policy

with such an interpretation on its relation a collective flow policy.

Example 17 A system contains a file of passwords of class pass. No single user may

arbitrarily view this file, however a system manager (class s-mgr) and a system operator

(class s-op) are allowed access to the file if they do so together (collectively). This collective

policy is described by the reflexive relation in figure 7. In this policy, information is not

pass

s-op u-mgr

L

Figure 7: Collective flow policy

allowed flow from class pass to a class u-op, or from pass to s-mgr. However, it is allowed

flow from pass to a combination of system manager and operator, i.e., pass -,.. s-mgr V

a-op.
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If entities are bound to classes drawn from a collective policy R, then a system enforces

the policy R if

Vt,. C ENTS.C > Y"= A E 1  V F (13)
EEt FEY

This requires that if C t> F, then the entities of 6 must have a collective classification that

may flow to the collective classification of the entities of Y. Note that a similar requirement

can be given for group confinements, where each entity is bound to a set of classes from the

collective policy.

Example 18 Continuing with example 17, a password file, and users Jones and Smith

have bindings

Pfile = pass Jones = s-op j = s-mgr

A system with only the flow Pfile t> Jones is not secure by requirement (13). However, a

system with the flow Pfile r> {Jones, Smith) is secure, since Pfile -,# Smith V Jones L

Example 18 shows that an n-person (flow) rule can be specified in terms of a collective

flow policy. The policy transform from section 4.1 implies that an n-person rule can be
described in terms of a lattice, and enforced using its relations and operations. However,

since the security requirement for collective policies is different to that for flow policies, a

collective policy cannot be directly supported within the framework of existing flow models.

Thus for example, the MAC model proposed in section 3 could not, in its present form,

enforce a collective policy. Further research is needed to determine how the MAC model can

be modified so that it can enforce these policies.

6.2 Integrity

A well known interpretation for a reflexive lattice is an integrity policy[3]. An integrity

policy describes a set of clearances and a relation between these clearances that defines

their relative superiority. If R is a reflexive lattice describing an integrity policy then for

a, b E aR, if a -- b the clearance b is higher or superior to, the clearance of a. If the relation

A t> B is interpreted as entity A can, in some way, affect the integrity of entity B, then if
A > B, A must have a higher clearance than B. Thus for A, B E ENTS,

Polic5
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where the clearance of entity E is denoted L. If entities axe bound to a group of clear-

ances, with an interpretation similar to that of group confinement for flows, then aggregate

clearances must be considered. The aggregate integrity requirement

Vt,F g ENTS t. 9 Z. (14)

states that the entities in C must have sufficient common clearances to affect the integrity

of the entities in 7.

Example 19 The company in example 6 might have an integrity policy described by the

powerset lattice ol categories {acc,peru, sale}. An employee with an integrity confine-

ment of {{acc}{sale}{pers}} is permitted to change the phone numbers of any single

department, but not the numbers of different departments. An employee with integrity

{ {acc, pers, sale}} is allowed change the numbers of all departments (assuming his/her

confidentiality confinement allows such access). IL

6.3 Collective Integrity

An integrity policy can also be interpreted as a collective integrity policy. Such a policy
describes what collective clearances are sufficient to allow the integrity of an entity to be

changed. The collective integrity policy requirement follows from (13) and (14) above, and

is

VE,Y" C ENTS, ( e . * _ (15)

Example 20 An integrity policy (figure 8) describes the relationship between the security

clearances: cheques (cheque); company secretary (sac), and managing director (md). The

cheque

sac md

L

Figure 8: Collective flow policy

company secretary and managing director do not, individually, have sufficient clearance to
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write a cheque. However, their collective clearance can write a cheque. The company acoun-

tant may also be allowed write a cheque so long as he/she does so with the secretrary or the

managing director. We do not want a commitment on the clearance for the accountant, and
thus confine him/her to {secrod), providing the necessary aggregation control. Note that

this clearance contains an assumption that if there are two accountants in the company,

then they are trusted to write cheques jointly (but cannot write them individually). A

6.4 Controlled Violations

The notion of memoryless entities (Fection 3.5) together with reflexive flow policies provide

an effective approach to controlled flow violations. Consider the private hospital from

example 13 (page 43). Treatment information is not allowed flow to directors. A yearly

report on treatment statistics might be required by directors, however the flow policy will
not permit it. Introduce a new information class t-stat to the policy such that it is disjoint

to all other classes except for the flows treatmment -+ t-stat and t-stat -,+ director.

This revised policy continues to ensure treatment ?6+ director. Develop a (trojan free)

process that scans treatment information and generates a statistical report. If we use

statistical inference techniques to ensure that the report does not reveal anything anything

about individual patients, then the reporting entity (the report process) can be regarded as

memoryless, and confined to class {t-stat}. Now the only information that can flow from

treatment to directory is treatment statistics7 .

Carefull use of this technique can provide an approach to typing information flow-the

only information that can flow from class a to class b is information of class c. Of course,
the validity of the technique rests with the ability to provide sufficient assurance that the

entities confined to class c can be trusted to handle the information appropriately. The

technique can also be used for integrity policies, and provides a method for ensuring that

the integrity of an entity can be changed only by invoking a certain class of procedure. These

procedures are trusted in the sense that they will alter the entity's integrity appropriately.
7 assming that all entities bound to class 't-tat are appropriate statistical processes.
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7 Conclusion

This report proposes a new approach to describing controls on the dissemination of infor-

mation in system. The approach is driven by a flow policy that describes the allowable

flows between different classes (or kinds) of information that can exist in a system, and

each system entity is bound to a group of these classes. Unlike traditional binding, group

confinement provides control on the movement of aggregate information flowing into and

out of an entity.

The report provides evidence (via examples) that useful non-transitive flow policies do

exist, and thus we call for a basic requirement that , low relation can be any reflexive

relation on a set of classes. We know from section 4 that such a relation can be transformed

into a reflexive lattice, which in turn is defined in terms of lattice operations, thus facilitating

its implementation. With this combination of reflexive flow policies and confinement groups

complex policies can be described. To illustrate this, a selection of chinese wall policies were

described.

Section 3 detailed how group confinement could be refined to a state based security

model. The resulting model is not at all unlike existing state based models. Entities

are bound to components from a flow policy (the group confinement policy), a inductive

notion of secure state and secure transition can be captured and indeed a system could

be built around a reference monitor if desired. As a first attempt at refining the GCFM,

section 3 proposed a simple (yet effective) state based model. For the future we intend to

develop more complex model refinements, hopefully culminating in a refinement that will

be analogous to the Terry Wisemann security model in [16] enforcing group confinement.

Section 6 briefly considers how reflexive lattices can be used to specify properties other

than confinement. The most obvious applications of reflexive lattices are confidentiality and

integrity policies. The notion of a collective policy was introduced, where a reflexive lattice

describes how collections of different classes of information may flow. Further work needs

to be done to determine how collective policies can be enforced by state based models.

To conclude, this report has shown that it is possible to describe useful confidentiality,

integrity, separation of duty, and aggregation, based policies in terms of lattices.
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A Theorems and Lemmas

A.1 Group Confinement Model

Lemma 1 The bound order relation (definition 3) can also be defined as: for groups A, B E

A < B * (VaEAe3bEBsa < b)A

(VbEBE3aEA~a < b)

PROOF I By definition we have,

A < B VXEaLg*X^,+A=*X-,B

Pick singleton set X's from above, drawn from the set A, this gives,

A < B =VxEAe{x}..A {z}-+B

But {x} --,+ A always holds since x E A. Thus,

A < B = VxEAo{x} -,.+B

=> VaEAe3bEBoa < b (16)

Similarly,

A < B=:VXEoLoeB-,-X=*A.,.X

and picking singleton X's drawn from B gives,

A < B = VzEB*B-,.+{z*}=A',{x}

= VbEBo3aEA~a < b (17)

combining (16) and (17) gives

A :_ B * VaEA*3bEB*a < bA

VbEBe3aEA~a < b

PROOF II We have by definition, for A,B,X E cLc

B-+X4*3bEB,zEX*b < z
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but if(Va E A*3b E B*a < b) holds, then there is an a such that a < b. and by

transitivity a < x. Thus,

(VaEAo3bEBoa < b)=* VXoB-.X=:A-..X (18)

and similarly we can show,

(VbEB*3aEAoa < b)=: VX X-.-.A=*,X'--B (19)

and combining (18) and (19) gives

(VaEAo3bEBoa < b)

A(VbEB*3aEAsa < b) =*- A < B

0

Lemma 2 Equality (definition 6) forms an equivalence relation over Lg.
PROOF The reflexivity and symmetry of equality follows from its definition. Transitivity:

the definition of equality implies that

A = B =P Va E A a B covers a

* VaEA*3bi,b 2 EBbl < aAa < b2  (20)

Similarly,
B=C=VbEBc "I,c2ECoc < bAb < C2 (21)

Combining (20) and (21) gives

A = B A B = C * Va E Ao3b,,b 2 E B,c1 ,c 2 E C.

b, < aAa < b2 Acl < b,
Ab1  c2 AC3 < b2 Ab 2 < c4

Transitivity of bound order implies that

A=BAB=C = Va E A3c,c4 E CScI,c 4 covers a

* Va E A * C covers a (22)

We can similarly show that

A= BAB=C * VcE CoA covers c (23)
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Combining (22) with (23) gives,

A=BAB=C*A=C

i.e., equality is transitive. 03

Lemma 3 Equality preserves the group flow relation of L, i.e.,

VA, B,X E aLg 9A..* B A A = X =:* X -+ B

PROOF The definition of equality gives

A=X#-VaEA*3xEXea < x (24)

The definition of the group flow relation gives, for A, B E aLg,

A-,+ B =o, 3a E A, b E B e a -,+ b (25)

However, equation (24) implies that for a E A in equation (25), there exists an x E X such

that x < b, thus

A=XAA"B 3 3xEX,bEBex < b

We can similarly show that

A-,.* BAE=X* A.. X

[3

Lemma 4 Equality preserves upper aggregate, i.e.,

VX,Y,AE aL4X = Y * A EX = A E Y

PROOF The definition of equality gives, for X,Y E aLg,

X=Y *Vx zeX.*3yEY~z 5 y

Since L forms a lattice, then for any a E cR

z :_ yzVa < yVa
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Thus for an arbitrary A E oLg,

X=Y=:,VaEA,zEX@3yEYexVa <. yVa (26)

But given that A E B = {a V bla E A,b E B}, equation (26) can be written as

X=Y*VzEAEX 3IIEAeYex < y (27)

We can similarly show that

X=Y 4- VzEX93yEYOi < x

4- VxEAEB93IEAGYei < x (28)

Equations (27) and (28) give

X = Y = Vx E A E X * A E Y covers x

and we can similarly derive from X = Y that,

X =Y =*VyE AeY*AE X covers y

and thus X = Y implies that A e X = A E Y 0

Note that the proof that equality preserves the lower aggregate is identical in approach

to lemma 4, and is not given here.

Lemma 5 Union of confinement groups is closed over equivalence classes, i.e. for X, Y E

aLC
X=Y=*XUY=Y

PROOF From the definition of equality we have

X=Y = VxEX*Ycoversx

Y=Y , VYEY@Ycoversy

combining these give,

Vz E X U Y 0 Y covers z (29)

If X covers II (X E aLg,y E aL) then for any A E aLg, X U A covers y also holds. Thus

X=Y *VEYsXUY covers y (30)

and combining (29) and (30) gives X U Y = Y 0
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Lemma 6 Intersection of confinement groups is dosed over equivalence classes, i.e. for

X, Y E aLg
X=Y=*XnY=Y

PROOF We have,

X=Y * VyEY.Xcoversy (31)

X=Y * VzEX*Ycoversx (32)

Combining equation (31) with the fact that

Y = Y * Vy E Y O Y covers y

gives

X = Y = Vy E XfnY.Y covers y (33)

Now, for any y E Y, equation (32) gives

X=Y*3xoEX*y :_ xo

Applying equation (31) to Xo defined above, gives

X=Y*3xoEX,yoEY6y _< zoAxo < yo

Repeatedly applying equations (31) and (32) gives and equation of the form (n > 0)

X=Y =* 3zo,...,z, EX,yo,...,y EY

e y _< x0oAo x0< yo Ayo _< x, A...A x, < y, (34)

If n < IYI, then there exists in (34) above, components yh, Yk (h < k) such that Yh = Yk.

Equation (34) above, implies that there exists an z E X such that Yh _< x < yIk. Since

< is a partial order we have Ilh = z. Therefore we can state that

X=Y =0 VyEYo3zEX,'EY~y 5 ZAZ=y'

: VyEYo3ZEXlYoy _< z (35)

We can similarly show that

X=Y * 3zo,...,zEX,yo,...,'YnEY

OZO 5 y Ayo 5 - 0 A- 1 5 yo A...Ay, 5 z,

V YyEYs3zEXr)Yoz < y (36)
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Equations (35) and (36) gives

X=Y =*VYE YoXnY covers y

which when combined with (33) gives X = Y = X n Y = Y. 0

Lemma 7 Equality preserves the flow relation -,. defined on confinement groups, i.e. for

A,B,X E aLg,
A -,. B A A = X r X -,+, B

PROOF We have by definition

A=X * VaEA*3xEXex < a

A-.-,B = 3aEA,bEBoa < 6

by transitivity, we have x < a A a < b #x < b, thus

A=XAA-.,#B 3 xEXshtx < b
X: X-,. B

Lemma 8 The relation < forms a partial order over the group policy Lg.
PROOF Reflexivity follows from the definition of the relation.

Antisymmetry: Given A, B E aLg, then we have

A < BAB < A =V $bEBo3aj,a2 EAea < bAb < a2 A

VaEA*3b,,b2 EBobl 5 aAa 5 b2

E VbEBA covers bA

Va E A e B covers a

A=B

Transitivity: Given A, B, C E aLg, we have

A < BAB :5 C * VbEB*3aEAoa < bA (37)

VaEAo3bEBoa < bA (38)

VcECe3bEBsb < cA (39)

VbEBo.cECeb 5 c (40)
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Combining (37) with (39) and (38) with (40), transitivity gives

A < BAB <_ C = VcECe3aEAea < cA

VaEA.3cEC.a < c
=*A<C

I0

Lemma 9 The equality relation preserves ordering on confinement groups, i.e. for A, B, X E
aLg,

A < BAA=X*X < B

PROOF We have by definition

A=X * VaEAo3xEXex < a

A < B o VbEB@3aEAea < b

Combining these and noting the transitivity of bound order gives,

A=XAA < B*VbEB*3xEXex < B (41)

Similarly, we have

A=X * VzEXO3aEAox < a

A < B oVaEA*3bEBa < b

which implies

A=XAA < B*VxEX93bEBox < b (42)

Combining (41) and (42) gives

A=XAA < B*X < B

Lemma 10 Given partial ordering < on Lo, the upper aggregate operator gives an upper

bound on its operands, i.e. for A, B E aLg then A < A (D B and B < A e B
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PROOF Reflexivity implies that

Ae(B < A (B (43)

* VZEAEB*3YEAEBe < y

= VaEA,bEB*3yEA(DBeaVb < y

=0 VaEAo3yEAE)BeaVb <_ y (44)

(since a V b < y implies a < y). Similarly,

A B AEB (45)

= VyEAEDB*3aEA,bEBeaVb < y

* VyEAEB*3aEAsa < y (46)

Combining (44) and (46) gives A < A E B. We can similarly show that B < A ED B also

holds. 0

The proof that the lower aggregate operator gives a lower bound on its operands (under

the ordering relation < ) is identical in approach to lemma 10 above, and is not given here.

Lemma 11 The aggregation operators ED and ® are associative.

PROOF Follows, since the upper and lower bounds operators defined on the base lattice

L are associative, i.e., for A, B E aLg,

(A E B) E C = {X V cj(X E A ED B) A c E C}

= {(aVb) VclaEAAbEBAcEC}

= {aV(bV c)aEAAbEBAcEC}

= fa v xa E A A X E (B V C)}

= AE(BeC)

and similarly for the lower aggregate operator. 0

Lemma 12 If a confinement group policy is constructed from a distributive lattice then

the aggregate operators are distributive, i.e., for A, B, C E Lg, then

A( (B C) = (A e B) (A C)
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PROOF We have by definition and the distributivity of L,

AED(B®C) = Ae{bAcjbEBAcEC}

= {aV(bAc)IaEAAbEBAcEC}

= {(avb)A(aVcjaEAAbEBAcEC}

= ZAyPZE(A(DB)AYE(AE C)}

= (A EB)®(A®C)

It follows that

A ® (B E C) = (A 0 B) E (A ® C)

also holds. Note that if our base lattice L is not distributive then Lg is not distributive. 0

Lemma 13 Given confinement groups A, B E aLg then,

VD.(A < DAB < D)*AEB-.D

PROOF We have by definition of <

A < DAB < D # VdED*3aEA,bEBea < dAb < d

=> VdED*3aEA,bEBaVb < d

= VdED*3xEAEBox < d

SA E B-..- D

Lemma 14 Given confinement groups A, B E aLo then,

VD.(A < DAB < D)=*3XCAEBeA < XAB < XAX < D

PROOF Define X above as

X={zEAeBI3dEDez < d}

It follows from its definition that

VzEX*3dEDox < d (47)
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Since D is an upper bound on A and B then,

VdEDs3aEA,bEBsaVb < b

VdEDo3xEAEBXz < d

Thus for any d E D, we have an x E A E B with x < d, and therefore z is also a member

of X defined above. Thus,

VdED zEX~z < d (48)

Combining equations (47) and (48) givem X < D. Next, from the definition of X we have,

Vx E Xe 3a E A,bE B ea V b= x (49)

VxEX*3aEAea < x

Since A < D then,

VaEA*3dED*a < d (50)

and since B < D we have

VdEDe3bEBeb < d (51)

combining (50) and (51) gives

VaEAe3dED,bEBoa < dAb < d

VaEAe3bEB93dEDoa < aVbAaVb < d

and since X contains avb(aE A,bE B) such that avb 5 d(forsomedE D),wecan

write

VaEA.3xEXea < X

combining this with (50) above gives A < X, and we similarly have B < X, and the

lemma is proven. 0

A.2 State Machine Model SMM

Lemma 15 Given confinement groups A, B and C, each constrained so that V(A), V(B)

and V(C) holds, then

C -. A 0 B * C -, A A C -. B
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PROOF I We have

C-,.,AOB 3cEC,aEA,bEBec < aAb

3cEC,aEA,bEBec < aAc < b

SC-,AAC #B

PROOF II We have

CAAC-.,B=*3c,c'EC,aEA,bEBec < aAc' < b

but because V(C) holds, we have Ic < a and I-C < b. Thus

C-,+AAC,..+B * 3CEC,aEA,bEB.c < aVb

= C-. +A®B

Note that

A E) B CO A-. C A B -- C

does not necessarily hold (in fact, for this to hold, C must contain a component that forms
an upper bound on every element of C). 03

Lemma 16 v() is closed over @ and ®, i.e., for groups A and B,

v(A)AV(B) v(AEDB)

v(A ® B)

PROOF

V(A)AV(B) - L -AV.LBEAE B

* (A E( B)

L IAAIBE A 9 B

Sv(A ® B)

Lemma 17 Given confinement groups A and B with v(A) A v(B), then

I AIDB4C-LA V.LB

PROOF Follows from the definition A ED B = {a V Bla E A A b E B 0
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Lemma 18 Given entities E and F, and a secure transition sequence E,, then

E t*F *Vf E £.Fe < f

PROOF We will use induction on the length of E,.

* If n = 0, then since so is secure we have,

E t>F 4* Ei~

:* Vf Es.F ..0 .E< f

and thus the trivial case holds.

* (inductive step) Assume that it holds for n. Now consider E,,+1 . We have by definition,

En+I 
n '+E t> F= 3GEENTS#E t GAG > F

The inductive hypothesis gives,

En
E > C = Vg E s,.Go .L,o.E _ g (52)

The definition of a secure state gives,

G t'> F :* Vf E sn+ I -- ,.+a._ <- f (53)

Since the transition from sn to sn+I is secure we have sn+. -_ an.G. Applying this

to equations (52) and (53) gives

E F = Vf E sn+.Fe L,,.G < fA -Lao.E < -La,.G

= Vf E sn+ile .L5o.E _< f

Thus, by induction the lemma holds. o

Theorem 2 The state model SMM is a refinement of the abstract GCFM, i.e., for every

secure transition sequence En, then

VC,YF g ENTS.6 tP=So,*>o. -

If this holds, then any system that is secure by SMM (every En is secure) will be secure by

GCFM.

PROOF We have for , FC ENTS

C =: VEE., FE.TE r F
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Applying the previous lemma (18) gives,

VE E C, F F a Vf E 9, -fLo._ _< f
* VF E F'0Vf E 8n. F0o.Z _ f

Since the transitions from state so to state s, are secure then sn.F C so._, and thus

t T" VF E T * 3f E soFe -Iso.re. _ f

VF E Y*so.- . F

since the confinement groups are restricted, lemma 15 can be called on to give

Lemma 19 A (secure) transition from a secure state s to a secure state s' with flows

described by > is possible iff

VE E ENTSe G {s.XlX > E} - s.E (54)

PROOF I (If a secure transition to secure s' with flows > at state s' exists then

equation 54 holds) At state s' we have for E E ENTS,

VX E ENTS 0 X t> E Ve E s'.Eo -L,.x < e

E {s'.XIX t> E} , s'.E

since the transition from s to s' is secure we have s'.X C s.X for each entity X and thus

E {'.XIX I, E} 9E {.X X E}

which implies,

YE E ENTS. Q {s.XIX > E} , .E

PROOF II (if equation (54) holds, then there exists a secure state $ with flows described

by relation L> , and reached by a secure transition from a) Define the confinement of each

entity E at state s' as

s'.. - {.XIX > E} n s.E

and the flows at state a' as: E > F * £ t> F.
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" Before proving that s' and the transition is secure we will prove that the confinement

for each entity is non-empty. Consider the lowest bound on A =ED {s.XIX > E}.

Since (54) holds, we know that there exists some e E s.E with IA < e. Futhermore,

since , is reflexive we have E > E and thus -L.p. _< IA for A above. Thus we have

.L.E < ALA < e (55)

for -L.E,e E s.E. This implies that s.E covers IA. Thus we have IAE s.E, and also

IAE A, and therefore IAE .s.E.

" That the transition from s to s' is secure follows since by its defintion s'.E is a subset

of s. E.

" (state s' is secure) Firstly, the group confinement of each entity is valid since we know

that it is non-empty, and by lemma 15 since V(s.X) holds then v(ED {s.XIX t> E)

also holds.

Now, suppose that there is a flow E > F at state s'. We know by the transitivity of

> that,

S'._F = (e {s.XIX > E} E)E {s.YIY t> B A -,Y , A}) n s.F

Vf E s'.F* . < f
- { ,s.XIX t> E)

From above (equation 55) we know that this lower bound is also a member of s'.E

and since

S'.E =a {s.X__X E} n s.E

we have

E . F = Vf E s'.Fe .L,,.E f

and state s' is secure.

0

Lemma 20 Given confinement groups A and B such that V(A) A V(B), then

(AEDB)nA=f{aEAlBin a}

PROOF We have by defintion of upper aggregate,
b

aE(A@B)fA =* aEAA3a'EA,bEB*eaV=a
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* aEAA3bEBeb < a

a E AA IB < a

aEAAIBS = 3bEBsaEAAb < a

* 3bEBeaEAAaVb=a

= aE(AEB)nA

Lemma 21 Given A and B such that V(A) A V(B), then

B - A V((AEB) nA)

* I(AEB)nA--LAVI B

PROOF We will prove that IAVIB is a member of (A E B) n A, and since it forms

a lowest bound on (A e B) it will also form a lowest bound on (A E B) n A and thus

V((A E B) n A) holds.

Firstly, note that IAVLB is a member of A E B. We have,

B,A=>3aEA,bEBeb < a

but V(B) holds, so this simplifies to

B-. A 3a E As J-B < a

=,* 3a E A IBVIA :_ a VIA

=* 3a E As IBVI A <5 a

This and the fact that IA _ I-BVIA trivially holds gives

B"--+A 3a E AoIA : IBVIA A IBVI A <: a

= A covers LAVIB

=* IAVIBE A

Thus we have IAVIBE (A (D B) n A. r3

Lemma 22 The confinement of an entity S at state s,,+ reached by transition sequence

n,+I (i.e, transition sequence E,+ built up using transition Req), can be calculated as,

S,+. Z = {e E s,,.LIVX * X I> E =,.L,,.x < e}
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PROOF Since t> is reflexive, we have E t+> E and applying lemma 20 gives,

sn+l._ = e {sD..X "L E}nls.E

= (e {-..aix "' E} E8n.)ns..

= {e Es_.Eji -L _ e}
e{f..XIx > E)

Finally, applying lemma 17 to this gives

s+.E = {e E s,,.EIVX * X I>l E i-°..x <_ e}

the required result. 0

Lemma 23 The confinement of an entity E at a state s,, reached by transition sequence

ER can be calculated as,

ER
sn.E = {e E so.EjX > E) n ,o.f (56)

PROOF First note that the application of lemmas 20 and 17 can produce a result similar

to lemma 22 by allowing us to write the equation (56) as

s..E = {e E so.EIVX * X > E *±,o.2X -- e} (57)

To prove that this equation (57) holds (and thus equation (56) holds), we will use induction

on the length of ER.

" If n = 1, then

sl._ =e {fso.XlIX E} n so.f

follows from the post-condition for transition function Req.

" Assume that (57) holds for n (hypothesis). Now consider a transition from state s,
to state sn+1. Since the transition is made by Req, then

s,+.E = {e ._EIVX*X > + E=*i±.&- e} (58)

$n+1
Consider each X in this equation (58), where X >' E. We have by the inductive

hypothesis,

8n+1 .X = {z E so.XIVY 9 Y > X *.±,o.r < X}
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and since the original policy is a lattice,

L _e) R (VY e Y X e)

Thus (58) can be written as,

,+,._: {e E $..EIVX • X I> E =. VY Y 6 X=.. e}

= {eEs..IVX, Y Y >XAX , E~i.o.y,_ e}
ER

= {eE,9 ,.EIVYY W E= :J-,.y - e} (59)

Furthermore, if e E s..E, the inductive hypothesis implies,

ER
eEso.EAVX*X >E=t-L,0 .x< e

But this condition already occurs in equation (59), and thus we can write,

Sn+i.E = {e E so.EIVX * X > E -. e}

= {e o.ElIX > E} n so.E

and the lemma is proven. 0

Lemma 24 The lowest bound on the confinement of an entity E at a state sn reached by

transition ER can be calculated as

,,,.E=V {.Lo.X IX t" E}

PROOF From lemma 23, we have

J-1n..E = -L  Eft

({ao.XIX > E@eso.E)nao.E

ER
Since state sn is secure, E {so.XIX > E} -. so.E (theorem 2), applying lemma 21 gives

-Ln.g=-L E L*{.o.XlX I> E)

reflexivity of I> gives E > E which, along with lemma 17 implies

-L-. = I ElE
i{ao.XJX X> E}

= v {.O. IX E}
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Theorem 3 Given a transition sequence ER, built from transition function Req, then if
OP

the transition to a state s,+, with flows defined by C is not possible by the pre-condition

on Req(op, s), then the flows described by En+l are not secure by GCFM, i.e., given state

a reached by E ,

3Ee ENTS. • {s.XIX tW E} ?(- q,.E =

-(VC,Y g ENTS 9 C rn+1 F =0 so._-.e 8o.-)

PROOF To prove this we must, given e {s.IX t E} ?4 8n.E, show that some

C, T C_ ENTS exist such that C tY T but 9o.fe "(* so.Z-. We will pick this C and F to
En4 1

be {XIX rt E} and {E} respectively.

Suppose there is an E such that G + sn.E, where

In+,
G =e {sn..xIX t E}

Applying lemmas 17 and 24 in order gives

-LG = V {..L8 .x IX " E}

= v {v {ia,,. Y 11' x *x ".NE
t>~ X}IX t> E}

= V {io,,Y 13X XAX >' E}

= v{. InyIY , E} (60)

£43 (X ER4 j
Note that since E ° ' £, we have {XIX t E} 9 {x , E}, which implies

-a.EC-LG (61)

We have,

G ?4 S,.E * Ve Es.Ee --LG : e

Applying lemma 23 to Sn.E in this equation gives

ER
G -k *n.E 0 Ve E so.e (VX * X > E :,.Lo.X <_ e) "LG < e

* VeEso.Ee.L E < e *-±_<G e
e{,o.&lx I> E)

= Ve ao.Eo -(e-i. _< eA -LG :< e)
{ao.XJX > E)

73



However, we have I . = and from equation (61), -l-.,.E :5 lG. This gives
{, 0.IX > E)

G 9 4s. Ve s. - G< e

Applying equation (60) gives,

G--sn..E:*-E{so.Y_Y t> E} Aso.E

Thus the flow {YIY t> E} L' {E} which is not permitted by the transition function

Req is not secure in GCFM. 0

A.3 Reflexive Flow Policies

Lemma 25 The bound order relation (definition 9) is partially ordered.

PROOF Reflexivity and antisymmetry follows directly from the fact that the flow relation

is reflexive and pseduo-antisymmetric.

By the definition of bound order we have for a, b, c E aR

a < bAb < c * (Vxex-.a=>x-',b)A(Vxex-',.b=,x-..c)

= Vx ox -a * x -c (62)

similarly,

a < bAb < c= Vxc-,+x a-.+x (63)

combining equations (62) and (63) gives

a < bAb < c=>a < c

i.e., bound order is transitive. 0

Theorem 4 The symmetric powerset lattice forms a lattice, i.e., given set S then Ps S is

partially ordered and every pair of components have unique lowest upper and greatest lower

bounds.

PROOF

s s S is reflexive. Follows from its definition.
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" Ps S is antisymmetric. For A, B E Ps S, we have by definition,

A < B= BL _AL

B < A AL _BL

which implies AL = BL. We can similarly show that AR = Bm, and thus A = B.

" Ps S is transitive. For A, B, C E Ps S, we have by definition,

A _B = L dL AL

B <C =o CLBI

which implies CL g AL. We can similarly show that CR 2 Am, and thus A < C.

" V is the lowest upper bound operator for Ps S. Since intersection gives greatest lower

bound and union lowest upper bound on a powerset lattice, then for A, B E Ps S,

(AL ; AL n BL) A (AH 9 Am U BR)

i.e., A < A V B. Similarly, B < A V B. Furthermore, for all C E Ps S we have,

(AL ;? CL A BL ;? CL) A (Am 9 CHs A Bm C CH)

which implies

(AL n BL 2 CL) A (Am U BH C Cm)

i.e, A V B gives the lowest upper bound.

" A is the greatest lower bound operator. Follows from the symmetry between its

definiton and the definition of the lowest upper bound operator.

0

Lemma 26 The Symmetric powerset lattice is distributive, i.e, for A, B, C E P, S for some

set S, then

A V (B A C) = (A V B) A (A A C)

PROOF Since a powerset lattice is distributive, then from the defintion of a symmetric

powerset lattice,

AV(BAC) = AV(BLUCL,AMrnCR)

= (AL n (BL U CL), A) U (B. n Cm))

= ((AL nBL)U(AL nCL),(Am UBm)n(AmuC))

= (AvB)A(AAC)
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and we can simlarly show that

A A (B V C) = (A A B) v (A A C)

also holds. 0

Theorem 5 The mapping f's from an arbitrary quoset Q to symmetric powerset lattice

Ps crQ preserves the orderings of Q, i.e.,

Q PsaQ
Va,bEaQ~a < b*f's(a) < fs(b)

PROOF I For a, b E aQ we have,

f's(a) < f's (b) y I < a} C {yIy b}

Vyey :_ a - y a _ b

a ( =a < b

PROOF II Given a,b E aQ, we have (f,, (b))L = {yb < y} and (fs (b))n = {yly <- b}.

If a < b then a E (fs (b)), and by transitivity x < a => x E (f's (b))H, which implies

that

f{yy < a} _{yly < b}

and similarly we have that

a < b={yla < y} 2fy y <_ b}

and thusa < b= f's(a) f's(b) D

Lemma 27 Given the mapping from a quoset to a powerset lattice then if collections of

classes are disjoint from one another in Q then so is their lowest upper bound in P QQ, i.e.,

VA, B E aQ * A I B =* (U{ff (a)ia E A)) I (U{f' (b)b E B})

PROOF If A I B, then for all a E A there is no b E B such that b < a. Thus, since

f'(a)=fyly - a} then

b E B -,b E U{f (a)Ja E A}

Similarly we have,
a E A -"'a E U{ff (b)Ib E B)
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Reflexivity of Q gives us

bEB= bEU{f'(b)IbEB} aEA=*aEU{f(a)aEAI

Combining this with the two previous equations imply that if A I B then there are com-

ponents of {f' (a)Ja E A} that are not in {f (b)ib E B}, and vice versa. Thus the lowest

upper bounds are disjoint. 0

Lemma 28 Given the mapping f's from a quoset to symmetric powerset lattice then if

collections of classes are disjoint from one another in Q then so are their lowest upper and

greatest lower bounds in $Ps aQ, i.e.,

VA, B C Q A I B = (V {fS(a)Ia E A}) I (V {fS (b)Ib E B}) A

(A {fs (a)Ia E A}) I (A {f's (b)Ib E B})

PROOF We have,

Vffs(a)laEA =({yVaE A a < ,{ylaEl AE y _ a})

and from lemma 27 we know that if A I B, then

(V {frs (a)Ia E A}). I (V {fs (b)Ib E B})H

and it follows from the ordering relation over Ps aQ that

A I B =* (V {f's(a)a E A}) I (V {ff's(b)lb E B))

Similarly, if A I B we have

(A {fIs(a)la E A})L I (A {f's(b)IbE B})L

which implies that

A I B * (A {fs(a)a E A}) I (A {f's(b)lbE B})

Lemma 29 The mapping fJR from reflexive policy R to a group policy Rg built from a

powerset lattice preserves the flows in R, i.e.,

Va, bE aR*a4- b4 f'(a) f'(b)
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PROOF I We have by definition, that for a, b E aR,

f' (a) -RS f' (b) * 3X E f(a),Y E f (b)eX CY

but since f (a) forms an interval, then X E f"(a) implies F (a) C X _ h' (a). Thus,

fp (a) 9fp (b) =o- 3X E fp(a), Y E f(b) *F (a)9_X CY C I?, ( b)

=: F (a) C h(b)

and since, a < a holds, we have a E Fl (a) and from above, a E h' (b). By the definition of

h, a E h' (b) implies a -,, b.

PROOF II The definition of bound order gives,

Vy y <_ a*Vzsa < x:*y < x

Pick x = b in this equation, and if a -,+ b holds, then

Vy e y < a = a -+ b y- + b

{yjy a) C { ysly b)

=> F (a) _ hp (b)

p f(a) 9 f(b)

Lemma 30 The mapping fl'sC (definition 16) from R to the group policy RV built from a

symmetric powerset lattice preserves the flows in R, i.e.,

Va, b E rR *a R b €* fpS(a) J f'sC(b)

PROOF I We first note a property of the function f's c that it maps each element of oR

onto and interval of Ps aR, i.e,

Vx EaR o Fs (x) h e's (z) (64)

This follows by applying the fact that if a < b holds in R then a -,-, b holds, to the

definition of Fs and hls.
Now applying this law to - defined over Ps aR we get for a, b E aR,

f's (a) R frs(b) 3X E f'S(a),Y E frsb)eX < Y

* s (a) _ h's (b)
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Unfolding l's and h"s used above gives us,

fVs(a) R f's9(b) f {yja- y} _? {ylb 5 y}

b <b a .. b

* a, b

PROOF II The definition of bound order gives,

Vy.(b < y==o- V e-+b x. y) (65)

Pick z in equation (65) above such that z = a, and assume that a b. This gives,

Vyob < y=:a-.b=;a.~y

=* {yb < {yja-..s y} (66)

Similarly, we can prove using the fact that

Vy e y < a Vx * a ,. x =::. , x

and a -s* b implies

{Y < a} C {Yly * b} (67)

Combining (66) and (67) gives

a --+ b F P's (a) < h"s (b)

*> fvSC(a), f" Ps(b)

the desired result. 0

B Transforming a Reflexive Policy to a Symmetric Power-

set

The section 4.2 considered how a reflexive policy could be transformed into a powerset

lattice and appropriate group confinements to be enforced by the GCFM. This section

of the appendix will show how the transformation can be made to a symmetric powerset

lattice.
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Given a reflexive flow policy R, construct a group confinement flow policy (section 2)
built from the symmetric powerset lattice of the set of security classed defined by R. The

alphabet of this lattice Rg is,

aRg {X-X-Is- CkR1.{{},{}}

and has a flow relation (defintion 2) defined as (A, B E aR 0 ),

PS aR
A B B*3XEA,YEBeX < Y

As with a Rg built from a powerset lattice, this flow relation has a bound order defined by
the partial ordering relation < on RC. We know from section 2 that Rg does not form a

lattice, but if we consider only group confinements that form intervals on Ps aR, i.e., for
each confinement A then,

31,hEAeVxEAeI < xAx < h

Then the set of all such confinements are closed over E) and 0, and it forms a sublattice (an

interval lattice[1O] of Rg with E as lowest upper and 9 as greatest lower bound operators).

Furthermore, from the above we know that this interval sublattice forms a reflexive lattice

with flow relation -,-* and bound order <.

Definition 16 Define a mapping fs from arbitrary reflexive relation Rto this sublattice

of Rg as
fsc aR -. aRc f Sg(a) {4 (a),hs(a)}

where

R R
R (a) = ({bla '.+b},{blb < a))

hpR RRR

Each component of R will be mapped to an interval of Ps aR, with bottom Ps (a) and top

h s (a). Thus f's 9 is a mapping from R to a reflexive lattice. The mapping fps preserves

the flows of R, i.e.,

Va, b E aR e a R b* f'S(a) - f'sC(b)
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Thus we can use fpSQ(a) in Rg for any class a drawn from R with no detrimental effect on

flows.

In the same way that a group of classes A C aR gets transformed to the group

u{ff(a)Ia E A} so that it can be modelled the GCFM enforcing a powerset lattice, it
can be mapped to the group U{fsv(a)ja E A} to be modelled in the GCFM enforcing the

symmetric powerset lattice.

Example 21 A private hospital information system processes information of class records

(medical history); treatment (given to patients); accounts (for patients); director (share-

holder information); and management. How information may flow between these different
classes is described by the reflexive relation in figure 9. Note how treatment information is

records director

management

treatment accounts

Figure 9: Flow policy HOSPITAL

Ii x f~sc(x)

records {({r}, {tr}), ({r}, {tmr}}

director {({d}, {da}), ({d}, {dmna})}

management {({mrd}, {m)), ({m}, {tma}))

treatment {({tmr}, {t}, {tr}, {t})}

accounts {({amd}, {a}), ({ad}, {a}))

Table 6: Mapping from R = HOSPITAL to R g

allowed flow to records or management, but for confidentiality reasons, cannot flow to class

director. Similarly, accounts information is not allowed flow to records (for profitability

reasons). Management is allowed coordinate all this information given these constraints.

This reflexive relation can be transformed into the reflexive lattice R g using the mapping

described in table 6. Observe from this table that if information of class treatment and

81



azcunts are combined then their lowest upper bound in Rg is not f'sr(management),

but {({m}, {ta}), ({}, {at})}, which may flow to class management, but not to records nor

director.

A consultant in this hospital might be allowed sink and/or source information of class

treatment and records, and thus is confined to the group {treatment, records}. In the

GCFM this corresponds to a binding

f's C(treatment) U f'SG(records) = {({tmr},{t}),({tr}, {t}), ({r}, {tr}),({r}, {tmr})}

= {(tmr},{t}),({r),tmr})}

The hospital administrator might be bound to {management}. Note how the consultant

and administrator are bound to groups of 'classes' from the (symmetric powerset) lattice

Ps alHOSPITAL which is enforced by GCFM. These classes can be thought of as representing

the sources/sinks that they are permitted to make. For example, class ({mrd}, {m}) means

that the administrator can source accounting and record information (the {mrd} part), but

in this case cannot sink accounts or treatment information (the {m} part); the administra-

tor may also sink accounts and treatment information since ({m), {tma}) is in his group

confinement, but in this case cannot source records or director information (ensures non-

transitivity). Note how class management does not include element ({tm}, {md}), ensuring

that information does not flow from treatment to directors.

This range of possible classes representing management works neatly within the MAC

model described earlier. An administrator starts our with the potential to access everything.

However as he makes accesses, certain classes will be removed from his group confinement

to ensure that he cannot violate the flow policy. For example, if the administrator chooses

to read treatment information, he may no longer forward information to directors (but may

still forward to records). We shall see further examples of these kinds of aggregate policies

in the next section. I

Thus, an arbitrary reflexive flow policy can be transformed and enforced by the GCFM.

If the policy is transitive, then each component a of the policy aR will map to a singleton

set {f'sc(a)} in RG, since Fs(a) = h's (a). If the policy is not transitive, then certain

components of aR will map to a group of classes from Ps aR (in fact an interval, since

Ps(a) < h's(a)).

Example 22 Consider a market analysis database that contains information about banks

Bank-x and Bank-y, and oil companies Oil-z and Oil-w. There are two conflict of interest
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a f(s)

bank-x {({xzy), {x}), ({x}, {xzV}
bank-y {({yzv},{y})(y},{yzV})}

oil-z {((xyz}, {z}), ({z}, {xyz})}

oil-V {({xyv}, {V), ({V}, {xyv})}

Table 7: Mapping for BANKS U OIL

classes BANKS and OIL. Within conflict class BANKS there are two kinds of information

(datasets) b.nk-x and bank-y, corresponding to the class of information held by Bank-x

and Bank-y respectively. The Chinese wall policy insists that these classes are disjoint, i.e.,

information about one bank is not allowed flow to another bank. Thus the conflict of interest

class BANKS can be thought of as describing a flow policy with alphabet {bank-x, bank-y}

and relations bank-x -,-. bank-x, bank-y -,.+ bank-y. Conflict policy OIL has a similar

definition, with alphabet {oil-z, oil-v} and classes oil-z and oil-w disjoint.

Now we must define how these two policies can be composed. Flows are possible between

the components of the conflict policies so long as they do not violate the relations within

them. Therefore, the overall flow policy can be described by the join[lOl of BANKS and OIL.

Policy join ( U of policies C1 and C2 has alphabet (aCl U aC2) and its flow relation is

defined as (a, bE a(C1 U C2)),

CIUC2 C1
a 1%.4 b (a, b E CCl a-,+ b) A

C2
(a,b E aC2 * a- b)

Table 7 gives the mapping of this policy to the group lattice built from the symmetric

powerset lattice Ps {x,y,z,v}, where bank-x is abbreviated to x, and similarly for the

other classes. However, on a closer inspection of policy BANKS U OIL we discover that it is

too general for our purposes here: it (correctly by its definition) permits flows from bank-x

to oil-z and from bank-y to oil-z and also from bank-x ( bank-y to oil-z, which is not

desirable. Thus, we need to supplement the definition of join with a definition of how the

aggregates of classes may flow in the joined policy. In the case of oil-z we wish to prevent

it from sourcing/sinking aggregate bank-x E bank-y. Therefore given that,

f(bank-x) E f(bank-y) = {({zv}, {xy}), ({}, {xyzv}))
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define a class oil-z' ass,

oil-z' = f(oil-z)- (f(bank-x) ( f(bank-y))

= {({xyz}, {Z), ({z}, {z}), ({z), {,z})}

Note how ({z}, {xyz}) is no longer a member of oil-z'. The other classes can be similarly

redefined so as to constrain flows of (conflicting) aggregates,

bank-x' = f(bank-x) - (f(oil-z) D f(oil-w))

= {({xzv}, {x}), ({X}, {Z}), ({}, {x})}

bank-y' - f(bank-y) - (f(oil-z) ED f(oil-v))

f Q {yzv}, fy) (YD, Q }'fyzD'), (, ywM)

oil-v' = f(oil-w) - (f(bank-x) E f(bank-y))
= f Q xyW}, f VD, Q() (Vb ) {WD ), {yw))

Now, under this flow policy information is permitted to flow between the classes of differ-

ent conflict policies. For example, bank-x' and bank-y' may flow to oil-z', but their

aggregate bank-x' E) bank-y' may not.

We could make an additional restriction about information of class oil-z being per-

mitted to sink bank-x or bank-y information, but not both, i.e., remove bank-x ® bank-y.

This gives,

f(oil-z") = f(oil-z')- f(bank-x) ®f(bank-y)
= {({z), {z}), ({y-}, z}),({z}, {xz}), ({}, {yz))}

This is analagous to the requirement that once a user has written to one banking file, he

cannot write to other conflicting banking files. In section 4.2 of this report, the group

policy is constructed from a normal powerset lattice, and as was illustrated in section 4.1.1,

cannot effectively distinguish between the lower bounds of bank-x and bank-y or bank-x

and oil-z. Therefore, if we wish to express this kind of constraint on the policy a symmetric

powerset lattice must be used.. Note however, that V(f(oil-z")) does not hold, and thus

such a policy could not be captured by the SMM system model. However, as has already

been noted, this policy is a cdass of integrity policy and could be enforced as such.
$Note that the set difference operator is defined on the largest groups in the equivalence classes of its

operands.
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Any information about Bank-x stored in the dat.bace will have group confinement

bank-x'; information about Bank-y will have confinement bank-y', etc. A user of the

database will be confined to (bank-x' U bank-y' U oil-z' U oil-u'), allowing access to

every individual item of company information but not to conflicting aggregates.

Consider a database with entries X, Y, Z and W confined as

X = bank-x' Z=oil-z'

Y = bank-y' W =oil-V'

and a user E with confinement (bank-x' U bank-y' U oil-z' U oil-v'). A system with

flows {X, Z} L> U is secure since

2L E) Z = {(xz}, {xz}), ({}, {xyzw})} - E

Note how X E Z cannot flow to file Y. A system with flow {X, Y} I> U is not secure since

X E. E = {({zwx}, fXY}, Q{}, {xyzu})}

may not flow to E since there is no component of E that contains ({zw}, xy). 1A

If the reflexive policy was implemented using a powerset lattice then there is a imple-

mentation for policy join that is defined in terms of the powerset[9]. We need a similar

implementation for policy join where the policy is built using a symmetric powerset lattice.
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